Diagnostic Usefulness of the Urinary Na/K Ratio and Serum Chloride in Children with Decompensated Heart Failure

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Esraa Matarawy Eid Kasim

M.B. B Ch - Ain Shams University (2014)

Under Supervision of

Prof. Dr. Alyaa Amal Kotby

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Nanies Mohamed Salah EL Din

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Menatallah Ali Shabaan

Lecturer of Clinical Pathology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Alyaa Amal Kotby,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Manies Mohamed Salah && Din,** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Menatallah Ali** Shabaan, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Esraa Matarawy Eid Kasim

List of Contents

Title	Page No.
List of Tables	i
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	
Heart Failure in Pediatrics	13
Diuretics & Diuretic Resistance	37
☐ Electrolyte Abnormalities in Heart Failure	51
Subjects and Methods	64
Results	78
Discussion	112
Summary	132
Conclusion	137
Recommendations	138
References	139
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Common signs and symptoms of failure in children	
Table (2):	Showing comparison between Modification and NYHA classification	
Table (3):	Scoring system for grading CHF in in	nfants: 20
Table (4):	Drugs used in pediatric heart failure	30
Table (5):	Showing differences between Aquare Diuretics	
Table (6):	Basic data of the included patients	78
Table (7):	Diagnosis of the patients included	79
Table (8):	Clinical data of the studied pati admission and follow up	
Table (9):	Chest x ray of the patients on admiss follow up	
Table (10):	Serum electrolytes and acid base stadmission and follow up	
Table (11):	Renal function and Urinary param the studied patients on admission an up	d follow
Table (12):	Demographic data and anthrop measures of patients requiring Fur infusion and those kept on interval d	osemide
Table (13):	Clinical and radiological data of the on furosemide infusion versus maintained on interval dosing	those

List of Tables (Cont...)

Table No.	Title	Page No.
Table (14):	Serum electrolyte of the patier furosemide infusion versus maintained on interval dosing	those
Table (15):	Urinary parameters of patient Furosemide infusion versus maintained on interval dosing	those
Table (16):	Parameters of diuretic response in t	
Table (17):	demographic data and anthropomeasures in patients with or whypocholermia	without
Table (18):	Relation between hypochloremia Diuretic dose	
Table (19):	Change of furosemide therapy admission in patients with or whypocholermia	without
Table (20):	Comparison of clinical and radio features of patients with or whypochloremia on presentation and up	without follow
Table (21):	Showing comparison of serum electracid base status and renal parameter patients with or without hypochlore presentation and follow up	eters of mia on
Table (22):	Showing comparison of urinary elect and Urinary parameters of patients without hypochloremia on presentati follow up	with or ion and

List of Tables (Cont...)

Table No.	Title	Page No.
Table (23):	Comparison of diuretic response in p	
Table (24):	Correlation between serum chlorid demographic data, clinical, lab changes and different parameter assessment of diuretic response	oratory ers for
Table (25):	Demographic and anthropometric me in patients with or without hyponatre	
Table (26):	Showing diuretics use in patients without hyponatremia	
Table (27):	Clinical and radiological data in p with or without hyponatremia	
Table (28):	Showing serum electrolytes, acid base and renal parameters in patients without hyponatremia	with or
Table (29):	Urinary electrolytes in patients v without hyponatremia	
Table (30):	Showing measures of diuretic responsitions with or without hyponatrems	
Table (31):	Comparison of diuretic response in p with normal versus abnormal electrolytes	serum

List of Figures

Fig. No.	Title	Page No.
Figure (1):	CXR showing "egg on side" hear enlargement of the cardiac silhouet narrowing of the superior mediastin	te with
Figure (2):	Chest radiograph showing Anomalous Pulmonary Venous (TAPVR)	Return
Figure (3):	Electrocardiogram of patient anomalous left coronary artery fr pulmonary artery (ALCAPA)	om the
Figure (4):	Hyponatremia in heart failure	53
Figure (5):	Hypokalemia in heart failure	61
Figure (6):	Diagnoses of the patients included study.	
Figure (7):	Bar chart comparing relation serum at day 1 and day 3	
Figure (8):	Bar chart comparing net fluid ou day 3 admission with or Furosemide infusion.	without
Figure (9):	Box plot showing significantly less in Na/K ratio with furosemide infus	_
Figure (10):	Box plot showing significantly less in body weight in patients with furtifusion.	osemide
Figure (11):	Bar chart comparing dose of furose normal and hypochloremic patients.	
Figure (12):	Bar chart comparing chloride standard patients on furosemide infusion or s	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (13):	Comparing Net fluid out pu furosemidein Hypochloremic Normochloremic patients	e and
Figure (14):	Showing that hypochloremic g more negative change in N denoting poorer diuretic respone	a/K ratio
Figure (15):	Showing that hypochloremic groumore cumulative dose of fedenoting poorer diuretic response	urosemide
Figure (16):	Showing that hypochloremic g less change in body weigh furosemide denoting poorer response.	nt/40 mg diuretic
Figure (17):	Box plot showing relation cumulative diuretic dose and electrolyte abnormalities.	different
Figure (18):	Box plot showing relation between in bodyweight /total diuretic different electrolyte abnormalities	dose and

List of Abbreviations

Abb.	Full term
ACEI	Angiotensin Converting Enzyme Inhibitor
	. Advanced Chronic Heart Failure
	Anti Diuretic Hormone
	Acute Decompensated Heart Failure
	Acute heart failure
	Anomalous left coronary artery from the pulmonary
71120711 71	artery
ANP	Atrial Natriuretic Peptide
AQP2	-
•	Angiotensin II Receptor Blockers
AS	<u>-</u>
	Atrial Septal Defect
	Adenosine triphosphate
	Arginine Vasopressin
	Body Mass Index
	Brain Natriuretic Peptide
	Blood Urea Nitrogen
BW	
	.Common Atrioventricular canal
CHD	Congenital Heart Disease
	Congestive Heart Failure
	Chronic kidney disease
CL	
COA	Coarctation of Aorta
COP	Cardiac output
CRT	Cardiac Resynchronization Therapy
CTR	Cardiothoracic ratio
CXR	Chest X Ray
DCM	Dilated Cardio Myopathy
ECG	Electro Cardio Gram

List of Abbreviations (Cont...)

Abb.	Full term
ECMO	Extra Corporeal Membrane Oxygenation
<i>EF</i>	Ejection Fraction
EPHESUS	. Eplerenone Heart Failure Efficacy and Survival Study
EVEREST	Efficacy of Vasopressin Antagonist in Heart Failure Outcome Study with Tolvaptan
GFR	Glomerular Filtration Rate
GLDH	Glutamate Dehydrogenase
h	Hour
H	Hydrogen
HF	
HFNEF	Heart Failure with Normal Ejection Fraction
	Heart Failure with Reduced Ejection Fraction
	Human Immunodeficiency Virus
ICD	Implantable Cardioverter Defibrillator
<i>ISE</i>	. Ion Specific Electrode
<i>IV</i>	Intravenous
<i>IVS</i>	Intact Ventricular Septum
K	
LV	
	Left Ventricular End Diastolic Diameter
	Left Ventricular End Systolic Diameter
Na	Myocardial infarction
	Nicotinamide Adenine Dinucleotide
	. Nicotinamide Adenine Dinucleotide Dehydrogenase
	Nicotinamide Adenine Dinucleotide Phosphate
	Na-Cl Co transporter
	Sodium-Potassium-Chloride Co transporter
	Sodium-Potassium-Chloride Co transporter

List of Abbreviations (Cont...)

Full term Abb. NONitric Oxide NT BNP......N- Terminal Brain Natriuretic Peptide NYHANew York Heart Association PCTProximal Convoluted Tubule PCWPPulmonary capillary wedge pressure PDAPatent Ductus Arteriosus PVC...... Poly Vinyl Chloride RAAS.....Renin Angiotensin Aldosterone System Sa O2.....Oxygen saturation SCDSudden Cardiac Death Sig.....Significance SNSSympathetic Nervous System SPSS...... Statistical package for social science TAPVCTotal Anomalous Pulmonary Venous Connection TAPVR..... Total Anomalous Pulmonary Venous Return TGATransposition of Great Arteries UOP.....Urine output WRF......Worsened Renal Function V2R..... vasopressin type 2 receptor VADVentricular Assist Device VECExtracellular volume VSDVentricular Septal Defect WNKsWith No Lysine Kinases *Wt......Weight*

ABSTRACT

Objective: Comparing diuretic efficacy between high dose furosemide as a continuous infusion and bolus injections in children with congenital left to right shunts presenting with decompensated chronic heart failure.

Outcome measures: Diuretic efficacy of furosemide therapy assessed by net fluid output /40mg furosemide, change in Na/K ratio and change in body weight/40 mg furosemide in children with acute on top of chronic heart failure.

Patients and methods: The study included twenty six (26) patients, median age 0.75 years (range 0.42-1.2 years) with congenital left to right shunts presenting with normal ejection fraction heart failure. Two urine samples were collected from patients on admission and at day 3 of admission for immediate assay of urinaryNa and K.

Results: Thirteen patients (50%) were on continuous furosemide infusion versus thirteen (50%) that were kept on furosemide bolus injections. Patients on Furosemide infusion had significantly prolonged Capillary refill time and worse ROSS classification on admission and on follow up. On assessment of the diuretic response in the two groups we have found that patients on furosemide infusion had decreased Na/K ratio (P=0.017), increased furosemide dose (P=0.018), had less change in body weight(P=0.000) in relation to the diuretic dose and less fluid output (p=0.081).

Conclusion: Augmentation of furosemide therapy in the form of infusion rather than interval dosing in patients with heart failure is not always associated with an equivalent increase in diuresis and may not benefit the patient.

Key wards: Pediatric, heart failure, diuretic resistance, furosemide infusion

Abbreviations: ADHF: Acute Decompensated Heart Failure, CHF: Chronic Heart Failure, CTR: Cardiothoracic Ratio, CXR: Chest x ray, HF: Heart Failure, K: Potassium, Na: Sodium, NYHA: New York Heart Association, SSPS: Statistical package for social science, UOP: Urine output.

Introduction

eart failure (HF) is a major clinical issue, which imposes a heavy social and economic burden on health care systems. In fact, it directly causes approximately 1 million hospital admissions every year in Adults in the United States (Roger et al., 2013).

Fluid overload, clinically evident as systemic and/or pulmonary congestion, represents the most frequent cause of hospitalization in this clinical setting, plays a central role in the progression of HF and has a major negative prognostic impact (*Dupont et al.*, 2011).

Adequate control of systemic congestion along with maintenance and improvement of renal function represents a key target of patient management in HF (*Greene et al., 2013*). On these grounds, current guidelines suggest that decongestion should be attempted through diuretic therapy. Diuretics, essentially loop diuretics, are utilized in more than 90% of patients with HF to obtain an increase in urinary output, dyspnea relief and weight loss (*Ponikowski et al., 2016*).

Diuretic treatment of systemic and pulmonary congestion can be ineffective in some patients with HF-a condition commonly referred to as diuretic resistance or refractoriness. However, the lack of an operational definition makes it difficult to define the exact incidence of this problem. It is thought that

about one third of patients with HF, especially in the phase of acute decompensation, may present with apparent diuretic refractoriness (Voors et al., 2014).

Lower chloride (CL) levels are linked to reduced loop diuretic response. Hypochloremic patients have a greater relative wasting of chloride compared with sodium(Na), whereas renal free water clearance does not seem to be impaired, suggesting that depletion rather than dilution may be the responsible mechanism (Hanberg et al., 2016).

Adult studies have demonstrated that hypochloremia is associated with neurohormonal activation and diuretic resistance with chloride depletion as a candidate mechanism. Sodium-free chloride supplementation can be associated with increases in serum chloride and changes in several cardiorenal parameters as aminoterminal pro B-type natriuretic peptide which decreases with chloride supplementation and the blood urea nitrogen to creatinine ratio which increases with chloride supplementation (Hanberg et al., 2016).