

Assessment of von willebrand factor in hepatitis c patients as biomarker for liver fibrosis and predictor of HCC

Thesis

Submitted for Partial Fulfillment of Master Degree
In Internal Medicine

By

Sara Mohy Mohamed Mohamed Khattab

(M.B., B.Ch.)

Faculty of Medicine - Ain shams university

Supervised by

Prof. Dr. Hanan Mahmoud Mohamed Badawy

Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine - Ain Shams University

Dr. Inas El Khedr Mohamed

Assistant Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine - Ain Shams University

Dr. Salah Sharaawy Galal

Lecturer of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgement

First and foremost, I always feel indebted to "Allah" most gracious most merciful whose magnificent help was the main factor in accomplishing this work.

Words cannot express the depth of my gratitude to *Prof. Dr. Hanan Mahmoud Mohamed Badawy*, Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine Ain Shams University, for her valuable suggestions, generous assistance, kind support and continuous encouragement throughout this work.

My great appreciation and thanks to *Dr. Inas El Khedr Mohamed*, Assistant Professor of Internal Medicine, Gastroenterology & Hepatology Faculty of Medicine Ain Shams University, for her unlimited help, kind support, valuable supervision, guidance and advice.

Galal, Lecturer of Internal Medicine, Gastroenterology & Hepatology, Faculty of Medicine Ain Shams University, for his kind support to achieve this work.

Finally, I am truly grateful to my family, my patients and everyone who helped and supported me throughout the period of research.

Sara Mohy

List of Contents

	Title	Page
•	List of Abbreviations	I
•	List of Tables	VII
•	List of Figures	X
•	Introduction	1
•	Aim of the Work	4
•	Review of Literature	
	- Chapter (1): Hepatoce	ellular Carcinoma5
	- Chapter (2): Liver Fib	rosis57
	- Chapter (3): Basics of	VWF Biosynthesis 114
•	Patients and Methods	
•	Results	
•	Discussion	
•	Summary	
•	Conclusion	
•	Recommendations	
•	References	
	Arabic Summary	

2D SWE 2D Real time Shear wave

elastography

A1 Apolipoprotein

A2M Alpha 2 macroglobulin

AFP Alpha-Feto Protein

AJCC American Joint Committee on Cancer

ALD Alcoholic Liver disease **ALP** Alkaline phosphatase

ALT Alanine Aminotransferase

ARFI Acoustic radiation force impulse

ARG 1 Arginase 1

ASC Apoptosis associated speck like

protein

ASH Alcoholic steatohepatitis

AST Aspartate Aminotransferase

ATP Adenosine triphosphate

AUROC Area under receiver operating curve

BCLC Barcelona clinic liver cancer

C (DC) Classical dendritic cells

C TGF Connective tissue growth factor caspase recruitment domain

CCL2 Chemokine (c-c motif) ligand 2

CCR 2 Chemokine receptor 2
CD Cluster of differentiation

CEUS Contrast enhanced ultrasonography
CHC Chronic hepatitis c virus infection

CLD Chronic liver disease

CLIP Cancer of the Liver Italian Program

CT Contrast enhanced computed

tomography

CXCL 10 Chemokine (Interferon Gamma

inducible protein)

DAMP damage associated molecular pattern

DC Dendritic cells

DWI Diffusion weighted imaging

EASL European association for the study of

the liver

ECM Extracellular matrix

EFSUMB European Federation of societies for

ultrasound in medicine and biology

ER endoplasmic reticulum

EV Extracellular vesicles

FCI Fibrosis cirrhosis index

FI Fibrosis Index

FOV Field of view

FXR farnesoid X receptors

Gd-EOB-DTPA Gadolinium ethoxybenzyl

diethylenetriamine penta acetic acid

Gp Glycoprotein

HA Hyaluronan

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

Hi-RTE Hi Real elastography

HMGB High mobility group protein

HSC Hepatic stellate cells

HVAT Hepatic veins arrival time

ICAM 1 Intracellular adhesion molecule 1

ICG Indocyanine green

IL-1 A Interleukin 1A

INF Gamma Interferon Gamma

IP-10 Interferon gamma induced protein

ITT Intrahepatic transit time

IV Intravenous

KC Keratinocyte Chemoattractant

(neutrophil chemokines)

KPa kilo pascal

LB Liver Biopsy

LPC Lysophophatidylcholine

LPS Lipopolysaccharide

LS Liver stiffness

LSECs Liver sinusoidal endothelial cells

MAIT Mucosal associated invariant T cells

MCAD Medium chain acyl coA

dehydrogenase

MCP 1 Monocyte chemoattractant protein 1

MDA Malondialdhyde

MEGX Monoethylglyinexylidide

MFAP 4 Microfibril associated protein 4

MIP-1 Alpha Macrophage inflammatory protein

one alpha

MIP-1 Beta Macrophage inflammatory protein

one beta

MIP-2 Macrophage inflammatory protein 2

MMP 1 Matrix metalloproteinase

MMP 9 Matrix metallopeptidase

MR elastography Magnetic resonance elastography

MR spectroscopy Magnetic resonance spectroscopy

MRI Magnetic resonance imaging

NAFLD Non Alcoholic Fatty liver disease

NASH Non alcoholic steatohepatitis

NF-kb Nuclear Factor Kappa –light – chain

enhancer of activated b cells.

NKT Natural killer cells

NLR nod like receptor

NO Nitric Oxide

NOS Nitric oxide Synthase

NOTCH 1 human gene encoding a single pass

transmembrane receptor

NOX Mixture of oxides of nitrogen : nitric

oxide – nitrogen dioxide – nitrous

oxide

NPV Negative predictive value

P (DC) Plasmacytoid dendritic cells

PC Phosphatidylcholine

PCR Polymerase chain reaction

PDE Phosphodiester

PDGF Platelet derived growth factor

PE Phosphatidyl ethanolamine

PIIINP Procollagen type 3 amino terminal

peptide

PME Phosphomonoester

PPAR peroxisome proliferator – activated

receptor

PRR Pattern recognition receptors

qHSCs Quiescent hepatic stellate cells

RANTES Regulated on activation, normal T cell

expressed and secreted

RIP 3 receptor interacting proteins

ROI Region of interest

ROS Reactive oxygen species

SAM S adenosyl methionine (methyl

donar)

SAP Serum amyloid protein

SE Strain elastography

SOD Superoxide dismutase

SPIO Super para magnetic iron oxide

SSWE Super-sonic shear wave elastography

STAT 3 Signal transducer and activator of

transcription 3

SWE Shear wave elastography

TACE Transcatheter arterial

chemoembolization

TACE-DEB Chemoembolization with Drug-

Eluting Beads

TAE Transarterial embolization

TARE Transarterial radioembolization

TE Transient elastography

TGF beta Transforming growth factor beta

TGF- β Transforming Growth Factor beta

TIMP 1 Tissue inhibitor of metalloproteinase

TLR toll like receptor

TLR4 Toll like receptor 4

TNF alpha Tumor necrosis factor Alpha

TNM Tumor-Node-Metastasis Staging

System

TRAIL TNF – related apoptosis inducing

ligand

Tregs Regulatory T cells

UCSF University of California, San

Francisco criteria

UICC Union International Contre le Cancer.

US Ultrasound

VCAM 1 Vascular cell adhesion molecule 1

VDBP Vitamin D binding protein
VLDL very low density lipoprotein

VWF Von willebrand factor

WHO World health organization

List of Tables

Table No.	Title Page	
Table (1):	Sixth edition UICC TNM classification of HCC (2002)	41
Table (2):	Modified Sixth edition TNM classification of HCC (is simplified into 4 stages to represent the optimum prognostic prediction)	41
Table (3):	OKUDA Staging System	42
Table (4):	CUPI score	44
Table (5):	CLIP scoring system	45
Table (6):	Several methods of locoregional treatment of HCC	49
Table (7):	Diagnostic accuracy of established serum markers	88
Table (8):	Diagnostic accuracy of selected experimental serum markers	91
Table (9):	HCC size in cm among HCC group	145
Table (10):	Portal vein invasion in patients with Hepatocellular carcinoma	146
Table (11):	Gender distribution among the study population	
Table (12):	Child-pugh classification among the study population	148
Table (13):	Descriptive analysis of the study population as regard the age	149

List of Tables

Table No.	Title P	age
Table (14):	Complete blood picture among the study groups	
Table (15):	Liver enzymes in the study group	os 153
Table (16):	Albumin, bilirubin and INR betw	
Table (17):	Von Willebrand factor among the study groups	
Table (18):	Alpha feto protein among the stugroups	-
Table (19):	Des gamma carboxyprothrombin between study groups	
Table (20):	There was no statistically significed difference between serum creating level among the study groups	nine
Table (21):	Child score in HCC, cirrhotic patients	166
Table (22):	HCV PCR among study population	on 167
Table (23):	Comparison between APRI score results among the study populat	ion 168
Table (24):	Comparison between FIB 4 score HCC and cirrhotic patients	
Table (25):	VW factor in patients with HCC a regard sex, child score, fibroscan invasion	n, PV

List of Tables

Table No.	Title	Page
Table (26):	VW factor in cirrhotic group without HCC as regard sex, child score, Fibroscan	
Table (27):	VW factor among the study population as regard lab, imaging data, child score, other markers of HCC and Liver fibrosis	

List of Figures

Figure No.	Title	Page
Fig. (1):	Natural history and biological of HCV-induced HCC development	
Fig. (2):	Growth patterns of progressed hepatocellular carcinoma	
Fig. (3):	Surveillance imaging in adults risk for hepatocellular carcino:	
Fig. (4):	Various gray scale US features HCCs. (A-C) On gray scale US, (arrowheads) can be seen as a nodule with thin hypoechoic peripheral zone	, HCC
Fig. (5):	CT scans for a liver showing (A arterial enhancement and (B) 1 venous washout	portal
Fig. (6):	Demonstrates an isointense le segment VIII on precontrast Ti weighted 3D	1-
Fig. (7):	Celiac angiography revealed a vascular tumor with proliferation fine tumor vessels	ion of
Fig. (8):	BCLC staging system	43
Fig. (9):	The JIS score can be obtained summing up the TNM stage so	· ·
Fig. (10):	Modified BCLC staging classifi and treatment schedule	
Fig. (11):	Pathophysiology of liver fibrosi	is 58

List of Figures

Figure No.	Title	Page
Fig. (12):	An overview of lipid metabolis hepatocytes.	
Fig. (13):	Interaction of immune cells at liver	
Fig. (14):	Assessment of liver fibrosis in chronic hepatitis c patients	
Fig. (15):	Histological clasisfication of life	
Fig. (16):	Schematic representation of the and new domain arrangement VWF	of
Fig. (17):	Overview of relevant cysteine residues in VWF	116
Fig. (18):	Biosynthesis and packaging o in WPBs	
Fig. (19):	Schematic representation of V secretion from endothelial cell	
Fig. (20):	Potential clearance pathways VWF	
Fig. (21):	Portal vein invasion among Hogroup	
Fig. (22):	Gender distribution among the population	ū
Fig. (23):	Child classification among HC group	

List of Figures

Figure No.	Title	Page
Fig. (24):	Shows age distribution among study groups	
Fig. (25):	Total leucocytic count mean vabetween the 3 study groups	
Fig. (26):	Hemoglobin level mean value between the 3 study groups	151
Fig. (27):	Platelet count among the 3 stugroups	
Fig. (28):	ALT level between the 3 study	groups 154
Fig. (29):	AST level between the 3 study groups	154
Fig. (30):	Albumin level between the stud	· ·
Fig. (31):	Bilirubin level between study g	groups 156
Fig. (32):	INR level between the study gr	oups 157
Fig. (33):	VW factor among the study gro	oups 159
Fig. (34):	Alpha feto protein level among study groups	
Fig. (35):	DCP level among the study population	162
Fig. (36):	Portal vein diameter among the study groups	
Fig. (37):	Liver size among study popular	tions 164
Fig. (38):	Serum creatinine level between study groups	