

The Diagnostic Role of Lung Ultrasound in Critically III Patients In Comparison With Chest X-Ray

Submitted For Full Fulfillment of The Master Degree in Critical Care Department

Mina Fayez Hanna

M.B.B.CH

Supervisors

Prof. Dr. Fahmy Saad Latef

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed El Sayed El Hennawy

Assistant Prof of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Wessam Zaher Selima

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2019

First and foremost a lot of thanks to ATJAH

I would like to express my sincere gratefulness to **Prof. Dr., Fahmy Saad,** Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University, for his great help and support to perform this work in the best way.

I would also like to thank **Dr. Ahmed El-Hennawy**, Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University for helping me and giving me the urge to finish this thesis in a satisfactory way.

I would also like to thank **Dr. Wessam Zaher**, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for her continuous directions and meticulous revision throughout the whole work.

Last but not least, my thanks and gratitude to my family especially my parents & my wife for their cooperation and encouragement.

List of Contents

Titles	Page No.
List of Abbreviation	I
List of Tables	III
List of Figures	IV
Introduction	1
Aim of The Work	3
Review of Literature	4
Chapter I: Normal Sonography of The Lung	4
Chapter II: Sonographic Findings in Different Chest	14
Diseases	l
Chapter III: Role of Lung Ultrasound in Acute Care	29
Patients and Methods	45
Results	53
Discussion	72
Summary	80
Conclusion	85
Recommendations	87
References	88
Arabic Summary	-

List of Abbreviations

Abbreviations	Meaning
ARDS	Acute Respiratory Distress Syndrome.
AAL	Anterior Axillary Line.
ABG	Arterial Blood Gas.
AKI	Acute Kidney Injury.
ALT	Alanine Transaminase.
AST	Aspartate Transaminase.
BLUE	Bedside Lung Ultrasound in Emergency.
CKD	Chronic Kidney Disease.
CRP	C Reactive Protein.
CT	Computerized tomography.
CUS	Chest Ultra-Sound.
CXR	Chest X-Ray.
DCL	Decreased Conscious Level.
DM	Diabetes Mellitus.
ECG	Electro Cardio Graph.
FALLS	Fluid Administration Limited by Lung ultra
	Sonography.
HB%	Hemoglobin.
HTN	Hypertention.
ICU	Intensive Care Unit.
INR	International Normalization Ratio.
K	Potassium salt.
MCL	Mid Clavicular Line.

MHZ	Mega HertiZ.	
MM	Milli-Meter.	
Na	Sodium salt.	
NPV	Negative Predictive Value.	
PAL	Posterior Axillary Line.	
PAOP	Pulmonary Artery Occlusion Pressure.	
PNX	Pneumothorax.	
PPV	Positive Predictive Value.	
RADIUS	Rapid Assessment of Dyspnea with	
	Ultrasound.	
ROC	Receiver Operating Characteristics.	
RUSH	Rapid Ultrasound for Shock and	
	Hypotension.	
SD	Standard Deviation.	
SESAME	Sequential Echocardiographic Scanning	
	Assessing Mechanism or Origin of Severe	
	Shock of Indistinct Cause.	
TLC	Total Leucocytic Count.	

List of Tables

Table	∑ :4∫o	Page
Table No.	Title	Page No.
Tables of Review		
1	Commonly used clinical protocols incorporating the	38
	use of lung ultrasound	
2	Integrating various modalities of point-of-care	39
	ultrasound	
Tables of Results		
3	Demographic data on studied patients.	53
4	Cause of ICU admission among studied patients	55
5	Comorbidities of studied patients	56
6	Laboratory investigations among studied patients.	57
7	Results of Sputum culture among studied patients.	58
8	Outcome among studied patients.	59
9	CXR findings among studied patients.	60
10	CT chest findings among studied patients.	61
11	US findings among studed patients.	62
12	Final diagnosis among stuided patients.	63
13	Sensitivity and Specificity of CXR among studied	64
	patients.	
14	Sensitivity and Specificity of US among studied	65
	patients.	
15	Comparison between US finding and CXR finding.	69
16	Sensitivity and Specificity of US compared to CXR	71
	among studied patients.	

List of Figures

Fig No.	Title	Page No.
1.	Eight zone lung ultrasound examination.	6
2.	The typical appearance of a normal chest on US. S: Skin, CW: chest wall, P: pleura, Pp: parietal pleura, Pv: visceral Pleura, L: lung, R: reverberation artifact.	7
3.	Bat sign. A longitudinal scanning of the intercostal space depicting upper (R1) and lower (R2) ribs and the pleural line (indicated by vertical arrow).	10
4.	Seashore sign. Pleural line is indicated by vertical arrows.	10
5.	A-lines: indicated by horizontal arrows.	12
6.	B-lines: shining (laser like), well defined, vertical hyperechoic artifacts (indicated by vertical arrow).	12
7.	US demonstrates an area of consolidation. The texture of the consolidated lung appears isoechoic to the liver.	17
8.	Lung consolidation(c) with air bronchograms (Ao), diaphragm (D), pleural effusion (Pl).	17
9.	B-lines 7 mm apart or spaced comet-tail artifacts. The pleural line (white arrow) and the ribs (R) with their acoustic shadow.	20

🕏 List of Figures 🗷

Fig No.	Title	Page No.
10.	A large anechoic effusion with passive	21
	atelectasis of the underlying lung is seen	
11.	Pleural effusion: anechoic collection (marked by asterisk)	24
12.	Sinusoid sign: The lung line moves towards	24
	pleural line during and away from pleural line	
10	during expiration (E).	25
13.	Barcode sign	25
14.	Lung point: the point where normal lung pattern	26
	(Seashore sign) replaces the pneumothorax	
	pattern (Barcode sign) during inspiration (indicated by vertical arrows).	
15.	(a) Normal lung and (b) pneumothorax patterns	28
15.	using time-motion mode lung ultrasound.	20
16.	Algorithm showing applications of the blue protocol.	32
17.	Lung ultrasound score and corresponding ultrasound patterns.	33
18.	Ultrasound guided thoracocentesis.	42
	Figures of The Patients & Methods	
19.	Philips Ultrasound machine and convex probe.	48
	Figures of The Results	
20.	Sex distribution among studied patients	53
21.	Smoking history among studied patients	54
22.	Cause of ICU admission among studied patients	55
23.	Comorbidities of studied patients	56
24.	Outcome amoung studied patients	59

🕏 List of Figures 🗷

Fig No.	Title	Page No.
25.	CXR findings amoung studed patients	60
26.	CT chest findings amoung studed patients	61
27.	US findings among studied patients	62
28.	Final diagnosis among studied patients	63
29.	Sensitivity and specificity of CXR among studied patients	64
30.	Sensitivity and specificity of US among studied patients.	66
31.	Pneumonia (P=0.005; S)	66
32.	Pleural effusion (P=0.12; NS)	67
33.	Pulmonary edema(P=0.01; S)	67
34.	Pneumothorax (P=0.27; NS)	68
35.	Parenchymal diseases (P<0.001; HS).	70
36.	Pleural disease (P=0.038; S)	70

Introduction

Management of critically ill patients in emergency and critical care setting is challenging and imaging techniques are essential for optimizing diagnostic and therapeutic procedures in these patients. In the last two decades the use of bedside ultrasound techniques for critically ill patient management has become popular due to the availability of less expensive and more portable ultrasound machines. Point of care ultrasound (**POCUS**) is increasingly being recognized as the superior imaging option in the emergency and critical care setting (Valopicelli et al., 2012). Even though the bedside ultrasound utilization in the emergency and critical care setting became increasingly popular in the last two decades, lung ultrasound (LUS) was not widely recognized until very recently. The reason was that lung was considered poorly accessible by ultrasound due to the presence of pulmonary air within a bony thoracic cage resulting in poor transmission of ultrasound beams and production of artifacts.

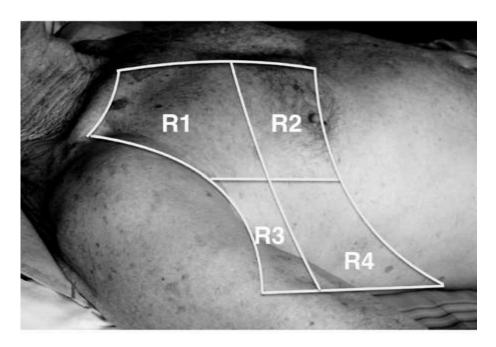
Chest radiograph is considered the first line diagnostic imaging modality for almost all patients presenting with pulmonary symptoms (*Bourcier et al.*, 2014).

However, studies showed that diagnostic accuracy of chest radiograph is relatively low. This leads to frequent false negative or false positive interpretations and hence inadequate therapy (*Nazerian et al.*, 2015). In addition, chest radiograph has several technical limitations that further interfere with accurate diagnosis, especially in **ICU** patients.

Chest **CT** is considered the gold standard for detecting respiratory pathology in acute dyspneic patients (*Bouhemad et al.*, 2007). Although accuracy of diagnosis is higher, **CT** has considerable limitations of its own, such as the transport of critically ill patients, contrast fluid and radiation exposure, and high cost.

It has been shown that **LUS** performs better than **CXR** and is a reasonable alternative to thoracic **CT** for diagnosing common lung pathologies (interstitial syndrome, lung consolidation, pleural effusion and pneumothorax) in emergency and critical care setting. The advantages of **LUS** are that it can be done at bedside easily without need of patient mobilization, it is a non invasive, does not utilize ionizing radiation and is easily reproducible (*Dexheimer Neto et al.*, 2012).

Aim of the Work


To compare between lung ultrasound and chest X-ray in diagnosis of different lung pathologies in critically ill patients using lung CT as a gold standard.

Normal Sonography of the Lung

Technique and Findings

The ultrasound machine has different probes with different frequencies. The probe for each examination should be chosen for the lung region where pathology is suspected. A high frequency probe improves the resolution but sacrifices the depth of penetration. Hence a high frequency linear vascular probe (frequency range 7.5 - 10MHz) is suitable to perform a detailed examination of the chest wall and pleura, while the low frequency curvilinear probe (frequency range 3.5 - 5 MHz) is best to examine deeper structures below pleura. However, we can use single probe for complete LUS examination in emergency and critical care setting (Lichtenstein et al., 2009). The sonographic modes used in LUS are real time B- mode (brightness mode) and M-mode (time motion). Real time B mode generates cross-sectional, two-dimensional images from the reflected ultrasound waves while M-mode records motion of the interfaces towards and away from the transducer. Doppler (color) technique is not usually required for **LUS** examination, but found to be useful when differentiating lower region lung pathology (like consolidation) from nearby organs like liver and spleen.

LUS includes the viewing of chest wall, pleural space, diaphragm and the lung parenchyma. All the intercostal spaces provide windows for LUS examination. In a simplified examination, one particular point per lung region can be examined, keeping the probe perpendicular to the ribs in the longitudinal plane (Garofalo et al., 2008). Screening is done through eight zone LUS examination (Valopicelli et al., 2012). In this protocol, each anterior chest wall separates into two regions; anterior and lateral, by using parasternal line, anterior axillary line and posterior axillary line as anatomical landmarks and then each of those regions subdivided in to upper and basal parts, finally making a total eight regions (Fig. 1). If pathology is detected on this simple screening exam, one can adjust the probe to examine along the intercostal space (oblique scan) in the abnormal region to further define the extent of pathology. Alternatively, there are three specific locations in the chest wall calling them 'BLUE points' (upper BLUE) point, lower BLUE point and PLAPS point), for performance of fast **LUS** in patients with acute respiratory failure (Lichtenstein et al., 2011). These points are used when performing the BLUE (Bedside Lung Ultrasonography in an Emergency protocol).

Fig. (1): Eight zone lung ultrasound examination: Each anterior chest wall is separated into two regions; anterior and lateral, by using parasternal line, anterior axillary line and posterior axillary line as anatomical landmarks and then each of those regions are subdivided into upper and basal parts (R1-R4).

Normal Pattern

The Normal Thorax

A series of echogenic layers of muscles and fascia planes are seen during the imaging as curvilinear structures on transverse scans, associated with posterior acoustic shadowing. When the ribs are scanned longitudinally, the anterior cortex appears as a continuous echogenic line. The visceral and parietal pleura are normally displayed by a low