

Incidence of Trocar Site Hernia in Fascial Closure Of the Port site Versus Skin Closure Only

Thesis

Submitted for the Complete Fulfillment of the Master Degree in General Surgery

$\mathcal{B}y$ Moustafa Ehsan Embaby

M.B.B.Ch Faculty of Medicine, Ain Shams University

Supervisors

Prof.Dr.Ayman Abd Allah Abd Rabo

Professor of General Surgery Faculty of Medicine, Ain Shams University

Dr. Amr Hamed Afify

Lecturer of General Surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ayman Abd Allah Abd**Rabo, Professor of General Surgery Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Amr Hamed Afify**, Lecturer of General Surgery Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Moustafa Ehsan Embaby

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim of the Work	3
Review of Literature	
History of Laparoscopy	4
 Anatomy of the Abdominal Wall 	12
• Laparoscopy	28
Trocar Site Hernia (TSH)	79
Patients and Methods	89
Results	96
Discussion	102
Summary	107
Conclusion	108
Recommendations	109
References	110
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Characteristics for both groups	96
Table (2):	Surgical operations in both groups	98
Table (3):	Complications in both groups	99
Table (4):	Correlation between type of surger complications.	•

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Various regions of the anterior about	
Figure (2):	The two layers of the superficial f	
Figure (3):	The diverse origin of the arterial su	
Figure (4):	Venous drainage and cutaneous	21
Figure (5):	Course of the thoracoabdominal ne	rves 22
Figure (6):	External abdominal oblique mus aponeurosis, and inguinal ligament fascial layer that covers the surface of the external abdominal and the external surface of the abdominal oblique muscle	t double internal oblique internal
Figure (7):	Aponeurosis of the external superficial inguinal ring, and the iligament	nguinal
Figure (8):	Deep inguinal ring, epigastric vess the structures that pass posterior inguinal ligament	r to the
Figure (9):	Direction of the fibers of the exter internal abdominal oblique muscle	
Figure (10):	Fibers of the internal abdominal muscle and aponeurosis in relation the rectus abdominis muscle	nship to
Figure (11):	Patterns of lamination of the sheath	
Figure (12):	Rigid laparoscopes 0°, 30°	33

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (13):	EndoCameleon® by Karl Storz of view can be adjusted ranging 120°	from 0°-
Figure (14):	Rigid laparoscope with a working	channel 34
Figure (15):	3D Laparoscopic camera	36
Figure (16):	High-flow CO2 insufflator	38
Figure (17):	A and B) Reusable trocars 3.5, 5.	5, 11, 12 40
Figure (18):	A and B) Grasping forceps (at fenestrated/ dissectors/traumatic	
Figure (19):	Hook scissors	44
Figure (20):	(A) Monopolar instruments; monopolar high-frequency need Storz): The tip of the needle retracted into the sheath	dle (Karl e can be
Figure (21):	RoBi: new generation of rotating forceps and scissors	· -
Figure (22):	A and B) Needle holders	46
Figure (23):	BERCI® fascial closure instrume	ent47
Figure (24):	Vaginal probe	48
Figure (25):	A and B) Myoma screw	48
Figure (26):	A and B) Rotocut® myoma morce	elator50
Figure (27):	(A and B) Suction-irrigation de The GORDTS/CAMPO—co suction and irrigation cannula	agulating
Figure (28):	A to C) Uterine manipulators	52
Figure (29):	A segment of small bowel protructhe trocar site after release adhesion, a trace of herniating care	sing the

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (30):	Bowel herniating through left tro- with an air fluid level	
Figure (31):	A segment of small bowel protrudic the trocar site after releasing adhesion, a trace of herniating can	ng the
Figure (32):	Blunt trocar (BT) was used to enable abdomen after creation of pneumoperitoneum	${ m f}$ the
Figure (33):	Sex distribution in both groups	97
Figure (34):	Surgical operations in the population	
Figure (35):	Distribution of Surgical operations groups.	
Figure (36):	Distribution of complications is groups.	
Figure (37):	Port site hernia in male patient with only closure to the port site which a 1 month after surgery	appears

List of Abbreviations

Abb.	Full term
BMI	. Body mass index
CO2	. Carbon dioxide
ECG	. Electrocardiography
ePTFE	. Polypropylene double-sided mesh
IV	. Intravenously
JAVMA	. Journal of the American Veterinary Medical Association
LPQ	. Laparotomy quotient
N2O	. Nitrous oxide
NOTES	. natural orifice transluminal endoscopic surgery
PSHs	. Port site hernias
SILS	. Single incision laparoscopic surgery
TSH	. Trocar site hernia

INTRODUCTION

rocar site hernias (TSHs) are rare complications that occur L in approximately 1% of all laparoscopic surgeries. With the use of bladeless, blunt-tipped entry trocars, some surgeons have argued that all port sites do not require fascial closure. Several cases of PSHs, however, have been reported recently with the use of bladeless trocars. The development of nonbladed obturators with integrated stability sleeves allows for creation of a muscle-splitting dilated laparoscopic port site with minimal abdominal wall defects after removal of trocar sleeves (Liu and McFadden, 2000).

It is recommended in literature that preventive measures should be taken to prevent TSHs after laparoscopic surgery (Owens et al., 2011). Trocar site hernia (TSH) is defined as an incisional hernia which occurs after minimally invasive surgery on the trocar incision site (Pamela et al., 2011).

Treatment of this complications is done by suture or mesh repair. But the best treatment remains is prevention. This prevention requires Knowledge of the risk factors of this condition. Large port sites and increasing number of ports needed for more complex surgeries increase the incidence of PSHs. PSHs tend to develop more frequently at umbilical and midline port sites due to the lack of rectus muscle coverage, weakness of linea alba and the thinness of umbilical skin. Port closure is important after laparoscopic surgeries to prevent

trocar site hernias. Complications related to port sites are most commonly reported to be incisional hernias. Many techniques and devices have been introduced into practice to minimize the risk of port site complications, which occur in 1-6% of cases (Khan et al., 1993).

The PSH depends on the trocar diameter, the trocar design, pre-existing fascial defects, and the direction of the port insertion. The risk of PSH is greater in obese and bariatric patients because of the larger pre-peritoneal space and elevated intra-abdominal pressure and some authors advise closure of holes > 5 mm at the fascial level. The various methods for port closure after laparoscopic surgery are: 1) standard closure (via skin wound); 2) laparoscopic direct visualization fascial closure methods; 3) using a spring-loaded needle or suture passer needle; and 4) angiocatheter technique (Hussain et al., 2009; Shah et al., 2010; Botea et al., 2011).

AIM OF THE WORK

The aim of this study is to evaluate the outcomes and complications in laparoscopic surgeries without fascial sheath closure of the port site (**Group A**). We compared the result with another group in which fascial closure of the port site was done by a standard method (**Group B**).

Chapter 1

HISTORY OF LAPAROSCOPY

aparoscopy or endoscopically examining the peritoneal cavity was first attempted in 1901 by George Kelling, a surgeon from Dresdon, who called this examining procedure "celioscopy." Kelling's first experiments were performed on live dogs. His technique involved insufflating the canine's abdomen with oxygen filtered through sterile cotton and utilizing a cystoscope to inspect the abdominal contents. Kelling went on to attempt this procedure in a few human patients, but he failed to publish his work (*Peters et al.*, 1995).

The investigator generally considered to be the man responsible for popularizing the technique in humans was the Stockholm-born physician Hans Christian Jakobaeus. Jakobaeus's technique involved the use of a trocar to establish pneumoperitoneum. Like Kelling before him, Jakobaeus used a cystoscope to examine the peritoneal contents (*Gomella et al.*, 1994).

In 1912, Jakobaeus published an article entitled "Über Laparo und Thorakosopie12". This article described 109 laparoscopies performed on 69 patients.1 Jakobaeus's work enabled him to visualize many different pathologies. He described conditions such as cirrhosis of the liver, metastatic cancer, and tuberculosis peritonitis. His manuscripts explored

the difficulties of laparoscopic technique and discussed some of the complications that he experienced and some of the controversies involved with the initiation of this new technique. He wrote in the introduction to the article: For laparoscopy to find general application, it must become completely safe. The risk is, of course, in the introduction of needle into the peritoneal cavity. How great this risk actually is cannot be established with any certainty. Certain authors consider the danger relatively insignificant...whereas others, particularly surgeons, estimate the risk to be much higher. The final range of applications of the method cannot yet be foreseen. However... I believe that I have demonstrated that the method is of practical value (*Gomella et al.*, 1995).

The first published use of laparoscopic technique in the United States was in 1911 by Bernheim, a surgeon from Johns Hopkins University. Bernheim used an electric head lamp and a proctoscope inserted into the epigastrium to view the stomach, gallbladder, and liver. During the next few years, laparoscopy was discussed at medical conferences and in the medical literature, but little progress was made in technique, instrumentation, or in clinical application. Perhaps the most important recommendation made during this time period was the idea proposed by Zollikofer in 1924. He wrote about the of benefit utilizing carbon dioxide to obtain pneumoperitoneum. This technique had two fundamental purposes. First, carbon dioxide was quickly reabsorbed from the peritoneal cavity so that pain resulting from the increased intraperitoneal pressure subsided relatively quickly. Second, the use of carbon dioxide alleviated some of the thermal complications that resulted when the abdomen contacted heat (Gaskin et al., 1991).

In 1929, the German physician Kalk designed a new lens system that permitted oblique (135°) viewing. This improvement was largely responsible for the widespread use of laparoscopy in Europe during this time period. As well, he introduced the "dual trochar" technique. These advances allowed investigators to both visualize the abdominal cavity and simultaneously to pass instruments into the cavities (Gomella et al., 1994).

In 1935, Kalk published a paper in Deutschen Medizinischen Wochenschrift, No. 46, which described his success in diagnostic laparoscopy. He wrote: This method really does not deserve the widespread opposition that still exists today, normally based on total ignorance.... In the more than 250 laparoscopies we performed in a seven year period, we did not have one unpleasant incident and only in the last two and one half years, in a further 100 laparoscopies, did I have the misfortune to puncture the colon. Otherwise, I have never experienced serious complications such as embolism, infection, or perforation of the large vessels (*Klaiber et al.*, 1993).