

Faculty of Engineering

Structural Engineering Department

Determination of the Contingency Values for the Construction of Water Treatment Plant Projects in Egypt

BY

Madonna Nabil Roshdy

B.Sc Civil Engineering
Ain Shams University, 2012

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Structural Engineering

Supervisors:

Prof. Ibrahim Abd El Rashid Nosier

Professor of Construction Project Management

Structural Engineering Department

Ain Shams University

Dr. Mohamed Ahmed El Mikawi

Associate Professor of Construction Project Management

Structural Engineering Department

Ain Shams University

Dr. Mohamed Tantawy

Assistant Professor of Construction Project Management

Civil Engineering Department

Helwan University

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Structural

Determination of the Contingency Values for the Construction of Water Treatment Plant Projects in Egypt

Madonna Nabil Roshdy

Bachelor of Science in Civil Engineering

(Structural Engineering)

Faculty of Engineering, Ain Shams University, 2012

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Hossam El Dien Hosny Professor of Construction Project Management Structural , Zagazig University (Examiner)	
Prof. Dr. Ali Sherif Abdel Fayyad Professor of Concrete and Construction Management Structural, Ain Shams University (Examiner)	
Prof. Dr. Ibrahim Abd El Rashid Professor of Construction Project Management Structural, Ain Shams University (Advisor)	
Dr. Mohamed Ahmed El Mikawi Associate Professor of Construction Project Management Structural Engineering Department Ain Shams University (Advisor)	

Date: 31 July 2019

STATEMENT

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Madonna Nabil Roshdy	
Signature	
Date:	

Researcher Data

Name : Madonna Nabil Roshdy

Date of birth : 25/11/1990

Place of birth : Minia

Last academic degree : Bachelor of Science in Building Engineering

Field of specialization : Project Management

University issued the degree : Ain Shams University

Date of issued degree : July, 2012

Current job : Demonstrator, Ain Shams University

ABSTRACT

All phases of construction projects include many risks. Those risks lead to serious cost escalation where Water Treatment Plant projects are not an exception. The Egyptian government spent around 4.44 billion Egyptian pounds on the water and sewer systems in 2014. The amount spent on Water Treatment Plants was around 35% of this sum (1.5 billion Egyptian). Water Treatment Plant Projects have significant importance due to their huge budget, tight schedules and obstacles. This leads to high level of risks in these projects. Therefore, the purpose of cost Contingency is to generate a reserve fund that is adequate to cover the ingrained risks in the project's total budget and completion duration. Its presence removes the negative impact of unforeseen event.

The issue of setting appropriate Contingency is one that often poses difficulties for most Water Treatment Plant Projects as a vital constituent of a project budget is "Cost Contingency". Generally, a Contingency is represented as a fixed percentage of project cost. However, it is not appropriate to apply this deterministic method to Water Treatment Plants projects due to its huge variability. This variability makes every Water Treatment Plant a unique one of a type Project.

Developing an artificial neural network (ANN) model that can help contractors, during the tendering stage, to predict the Contingency percentage was the main purpose of the study. An ANN model was constructed, using MATLAB Neural Network Toolbox, to predict the contractor's Contingency. This model has been trained, tested and validated with real data gathered from more than 80 constructed Water Treatment Plants. The sampling data was divided into three categories; 60% of the total input data was used for training the model, 20%

for testing the model and 20% for validating the model. The performance graphs for various training algorithm, error plots between trial test and ANN anticipated values for Contingency percentage, comparison graphs for training, testing and validation (regression plots) have been discussed based on coefficient of correlation, R. The results demonstrate a decent understanding between the actual and ANN anticipated results which strongly support the development of such models for Contingency estimation of Water Treatment Plants projects. The model can be further simulated to assess contractors in Contingency estimation for novice data and provide them with more realistic results than the mere deterministic method.

Keywords: Artificial Neural Network, Backpropagation Neural Networks, Coefficient of Correlation, Contingency, Deterministic methods, Probabilistic methods and Neurons.

ACKNOWLEDGMENT

Many people deserve acknowledgements for their contributions to this thesis. First of all, I would like to express my deepest gratitude to God. To him be all the Glory forever and ever. I would like to thank my **Professor Dr. Ibrahim Abdel Rashid** for always being my mentor and for his endless support. Also, all the gratitude goes to Dr. Mohamed Mekawi and Dr. Mohamed Tantawy for helping me through this research.

I am very grateful to my parents, **Eng. Nabil Roshdy** and Mrs. Randa Tharwat, for their unconditional love and endless support. I also can't thank enough my siblings, Eng. Mafdy, Miriam and Rafik, who have always been my source of inspiration and encouragement. This work couldn't have come light without the prayers and support of Mrs. Eman Sobhi. I would like to express my deepest gratitude to my grandfather who passed away during this study, Mr. Roshdy Michael, for his continuous help and support. I am thankful to my amazing grandmother Mrs. Aida Ayoub for her prayers and love. Without my family's constant encouragement, belief, and prayer, this achievement would not have been possible. My appreciation for them is indescribable.

It's true that friends are the family we choose, thank you to the best friends ever; Eng. Lorry Shaker, Eng. Alia Amer, Eng. Mary Magdy, Mrs. Dina William, Dr Sherin Moody, Eng. Marwa Fathi, Eng. Engy Hany, Dr Ereny Kamal, Mr. Mahmoud Aidarous and Eng. Ahmed Mostafa for their care and precious friendship.

I am indebted to the unfailing support and endless encouragement that I got from my very dear work colleagues: Dr. Ali Mohsen and Eng. Ahmed Ab-Almoujoud and my mentor and role model Dr. Mohamed El Deeb. A special thank you for Eng. Ahmed Moawad who helped me with the data gathering process and nothing would have come to light without his help. I can't thank enough Dr. Mohamed Awad and Dr. Moataz Soliman for all their efforts; I literally couldn't have done it without them!

Finally, I would like to dedicate this dissertation to my grandmother, grandfather and Uncle who passed away during this study. I can never forget their warm smiles and boundless love. They are always missed, always loved and forever dear.

TABLE OF CONTENTS

ABS	STRACT	I
AC	KNOWLEDGMENT	III
LIS	T OF FIGURES	VI
LIS	T OF TABLES	VIII
СН	APTER (1)	1
1	Introduction	1
1.1	General	1
1.2	Research Objective and Scope	3
1.3	Thesis Organization	3
СН	APTER (2)	5
2	Literature Review	5
2.1	Introduction	5
2.2	Methods For Contingency Determination	7
	2.2.1 Deterministic Methods	
2.3	Probabilistic Methods (PMs)	13
	2.3.1 Monte Carlo Simulation (MCS)	
	2.3.2 Fuzzy Set Theory	
	2.3.3 Regression Analysis	
	APTER (3)	
	Research Approach and Methodology	
3.1	Introduction	
3.2	Strategizing	
	3.2.1 Desired Contingency Percentage as Output Variable	
3.3	Data Collection and Evaluation	
	3.3.1 Identification of Effective Input Variables	
3.4	Artificial Neural Network Model	36

3.5 Model Validation and Future Simulation	41
Chapter (4)	42
4 Artificial Neural Network Model	42
4.1 Introduction	42
4.2 Development Tool for Artificial Neural Network Mo	odel43
4.3 Development of the ANN Model	
4.3.1 Data Entry	
4.3.2 Type and structure of the Artificial Neural Netw	
4.3.3 Backward Propagation	
4.3.4 Creating Network Data for the Model	51
4.3.5 Samples' Types in the ANN Model	53
4.3.6 Network properties of the ANN Model	56
4.3.7 Training Parameters	56
4.3.8 Training and Testing (Validation)	
4.4 Results and Analysis	62
4.4.1 Validation for the ANN Model	62
4.4.2 Regression Plots for Network Validation	64
4.5 Future Simulation	66
Chapter (5)	67
5 Conclusions and Recommendations	67
5.1 Conclusions	67
5.2 Research Contributions	68
5.3 Recommendations for Future Work	69
References	70
Appendix	72

LIST OF FIGURES

Figure 2-1: Contingency Estimation Means	9
Figure 2-2: Sample cumulative probability distribution curve	15
Figure 2-3: Sample Lognormal Distribution	18
Figure 2-4: Triangular Distribution with Minimum, Maximum and Mean	19
Figure 2-5: Trigen Distribution with Input Minimum, Maximum And Mean	20
Figure 2-6: Artificial Neural Network Process	22
Figure 2-7: Basic Architecture of Neural Network	24
Figure 3-1: Flowchart for proposed methodology	29
Figure 3-2: Histogram of Water Treatment Plant projects capacity (m³/d)	31
Figure 3-3: Hydrogeological Map of Egypt	38
Figure 3-4: Soil Association Map of Egypt	39
Figure 3-5: Steps for creating Artificial Neural Network	40
Figure 4-1: The MATLAB workspace	44
Figure 4-2: Neural fitting tool (nftool)	45
Figure 4-3: Neural Network Toolbox (nntool)	46
Figure 4-4: Importing Input Data into the Network	47
Figure 4-5: Importing Target Data into the Network	47
Figure 4-6: Feedforward Network	50
Figure 4-7: Basic structure of model to predict Contingency percentage	50
Figure 4-8: Create Network/ Data Window for the ANN model	52
Figure 4-9: Assigned percentages for the training, validation and testing samples	54
Figure 4-10: The training, validation and testing samples are assigned for the network	55
Figure 4-11: Screenshot of the model training parameters	58
Figure 4-12: Neural Network Training Tool	61

Figure 4-13: Performance Curve- Mean square Error vs. Epochs	63
Figure 4-14: Regression Plots for training, validation, test sets and the three sets combined	ed.65

LIST OF TABLES

Table 2-1: Contingency Estimating methods	7
Table 2-2: Individual Risk Expected Value example	11
Table 2-3: Method of Moments Example	12
Table 3-1: Net Present Value for the Plants according to the project letting year	33
Table 3-2: Ranking of cost variable of Water Treatment Plants (Marzouk, 2016)	36
Table 3-3: Hydrogeological Assessment for Groundwater level in Egypt	37
Table 4-1: Training parameters values for the ANN model	57

Chapter 1 Introduction

CHAPTER (1)

1 Introduction

1.1 General

"All human activities have ingrained risks especially construction work(s) which contain various risk elements" (Oladapo, 2006). Some of the difficulties during Construction are the risks and uncertainties. The risk's degree is different for every project. No construction project can be done without having elements of risks within it (Kwakye, 1997).

The construction industry defines risk as being subjected to loss or gain resulting from the construction process (Oladapo, 2006). Physical risk, environmental risk, political risk, legal risks and financial risk, are some of the major risks in construction projects (Oladapo, 2006). Recently, due to time and cost overruns, the risk in construction has garnered attention.

There are different risk response strategies for each type of risk. The plan for managing the identified risks is called the Risk Response Plan. There are four major risk responses categories (Project Management Institute, 2004) which are;

- Mitigation strategies involve reducing the probability of the risk or its impact.
- Avoidance strategies aim to avoid the risk completely. Sometimes, this
 requires having a new structure for the project.
- Transfer strategies where the risk is transferred to another entity.
 Lump sum is an example of transferring all risk to the contractor even if this leads to higher price for the owner.
- Acceptance strategies require knowing the risks, their probability and impact and finding way to provide room for those risks.

A typical Risk Plan includes all types of risk responses. At the

Chapter 1 Introduction

beginning of projects, risk avoidance should be applied to techniques that require demolition. Risk mitigation for poor workmanship can be solved by choosing qualified bidders. Risk transfer for contract prices' fluctuations by having a fixed contract type. Finally, the remaining unknown risks must be accepted.

For the accepted risks, it is crucial to get rid of most unknown risks through the identification process. Consequently, a Contingency reserve of time or budget can be assigned to those risks that have the greatest effect on duration and cost.

The issue of setting appropriate Contingency is one that often poses difficulties for most Water Treatment Plant Projects because the cost Contingency is a very important aspect in project budget. Cost Contingency for projects has been part of the project management process for more than 5 decades. Regardless of the omnipresence of project cost Contingency in cost management, there has been little research for the estimation methods of Contingency. The accurate estimate of Contingency directly affects the project's cost (Baccarini D. , 2005).

The purpose of cost Contingency is to create a reserve fund that is adequate to cover the ingrained risks in the total budget and the completion duration.

One of the key success criterions for project owners is the cost performance for all the different types of the Construction Projects. Cost Contingency is usually included within the estimated budget that will be presented to the project sponsor. Contractors usually never accurately calculate the cost Contingency; they subjectively estimate it as 5-10% from the total cost estimated; their basis for estimation depends solely on their experience in past similar projects. However, this method does not have a sound basis and is

Chapter 1 Introduction

difficult to justify or defend. Therefore, cost Contingency estimation is of a great importance to projects.

1.2 Research Objective and Scope

This research work investigates the determination of Contingency values for Water Treatment Plant projects in Egypt. The study's scope can be summed up as follows:

- 1. Study of Water Treatment plant projects model.
- 2. Explore and assess the initial list of variables that influence Contingency cost estimation for Water Treatment plant projects. This can be done through referring to previous literature findings and conducting experts' interviews. Also, determine the output variable form as the application objectives of the ANN model.
- 3. Determine the form of the output variables as the application objectives of the artificial neural network (ANN) model.
- 4. Build a model for future use to help the contractors, before the tendering stage, to determine the cost contingency reserve for similar Water Treatment plant projects.

1.3 Thesis Organization

The five chapters of this thesis are presented hereinbelow;

Chapter (1) Introduction: introduces the research topic, the objective of this research and the thesis outline.

Chapter (2) Literature Review: includes a literature review on cost Contingency estimation methods.

Chapter (3) Research Approach and Methodology illustrates the research approach and methodology followed in this study. This study is to be conducted in five main steps; Strategizing (exploring variables), data collection and evaluation, ANN model development using Neural Network toolbox, mode