

Diagnostic Algorithm for CT pelviabdominal masses in pediatrics

THESIS SUBMITTED FOR PARTIAL FULFILLMENT OF MASTER DEGREE IN RADIOLOGY

By

Amina Osama Mohammed Awwad

M.B.B.Ch – Ain Shams University

Under Supervision of

Dr. Hanan Eissa Ahmed, MD

Professor of Radiology department
Faculty of Medicine, Ain Shams University

Dr.Shaimaa Abdelsattar Mohammad,MD

Associate professor of Radiology department Faculty of Medicine, Ain Shams University

Faculty of Medicine

Ain Shams University

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, all thanks and gratitude to **Allah**, the Most Merciful, who gives us the power to accomplish this work.

I would like to express my deepest gratitude and cordial appreciation to **Prof. Dr. Hanan Eissa Ahmed**; Professor of Radiology department, Faculty of Medicine, Ain Shams University, for her expert advices and meticulous guidance and support throughout this work.

I feel deeply indebted to **DR**, **Shaimaa Abdelsattar Mohammad**;

Associate professor of Radiology, Faculty of Medicine, Ain Shams

University, who gave me much of the efforts, time, experience and close supervision throughout the work, she provided me with continuous encouragement and assistance throughout this work.

I'm also deeply grateful for all patients included in this study for being cooperative.

Contents

List of Figures	II
List of abbreviations	VIII
Introduction	1
Aim of work	3
Review of literature	
Chapter 1: Anatomy	4
Chapter 2: Technique	
Chapter 3: Pathology	23
Patients and Methods	70
Results	76
Illustrative Cases	105
Discussion	115
Summary and Conclusion	124
References	125

List of Figures

Figure 1.1: Normal segmental anatomy of liver on CT5
Figure 1.2: Extrahepatic biliary system
Figure 1.3: Normal CT appearance of the spleen
Figure 1.4: Normal CT appearance of the kidneys
Figure 1.5 Normal CT appearance of the pancreas
Figure 1.6: Normal CT appearance of the adrenal gland
Figure 1.7: Normal gastric wall of the stomach
Figure 1.8: Normal appendix
Figure 1.9: shows normal small bowel with positive oral contrast and large bowel with fecal matter in CECT axial images
Figure 2.1: Hepatoblastoma in a 3-year-old boy24
Figure 2.2: Cavernous hemangioma of the right lobe of the liver. axia. CECT images
Figure 2.3: Infantile hemangioendothelioma in a newborn
Figure 2.4: Hepatic cyst

Figure 2.5: Hepatic pyogenic abscess	30
Figure 2.6: Hydatid cyst	32
Figure 2.7: Caroli's disease.	33
Figure 2.8: PUJO.	35
Figure 2.9: A Wilms' tumor	36
Figure 2.10: Bilateral Wilms' tumor	37
Figure 2.11: Right Multicystic dysplastic kidney	38
Figure 2.12: CT Bosinak classification of renal cyst	41
Figure 2.13: Clear cell sarcoma	42
Figure 2.14: CMN in a 1-month-old boy.	43
Figure 2.15: Case of Lymphoma of the kidney	44
Figure 2.16: Splenic cyst.	45
Figure 2.17: Splenic abscess	46
Figure 2.18: Multiple splenic hemangiomas	48
Figure 2.19: A case of neuroblastoma	49
Figure 2.20: A case of neuroblastoma.	50
Figure 2.21: Adrenal ganglioneuroma in a 12-year-old abdominal pain.	-
Figure 2.22: pancreatic pseudocyst	53
Figure 2.23: Subphrenic abscess containing fluid and air	55
Figure 2.24: 6-year-old boy with Burkitt lymphoma	56
Figure 2.25: Intussception case CECT of the abdomen and pel year-old girl	
Figure 2.26: Mesenteric lymphatic malformation	59

Figure 2.27: Gastric duplication cyst	60		
Figure 2.28: Sacrococcygeal teratoma			
Figure 2.29: Urinary bladder RMS in a 4-year-old patient	64		
Figure 2.30: Hematometrocolpos.	65		
Figure 2.31: simple ovarian cyst.	66		
Figure 2.32 mature cystic teratoma.	68		
Figure 2.33 dysgerminoma.	69		
Figure 3.1 diagnostic algorithm for the cases	•		
Figure 3.2 PUJO.	89		
Figure 3.3 wilms	90		
Figure 3.4 simple cyst	90		
Figure 3.5 diagnostic algorithm for the cases.			
Figure 3.6 dermoid cyst.	92		
Figure 3.7 diagnostic algorithm for the cases.			
Figure 3.8 intussusception.	93		
Figure 3.9mesenteric cyst	94		
Figure 3.10 diagnostic algorithm for the cases.			
Figure 3.11focal hemangioma.	95		
Figure 3.12 multifocal hepatic hemangioma	96		
Figure 3.13 hepatoblastoma grade I	96		
Figure 3.14 hydatid cyst.	97		

_		diagnostic	•		
Figure 3.16	ó neurobla	astoma		 	99
Figure 3.17	7 multiple	abscesses		 	100
Figure 3.18	3 lymphoi	na		 	101
Figure 3.19	caseating	g TB LNs		 	102
Figure 3.20) sacrocoo	ecygeal teratom	a	 	102
Figure 3 .21	l retroperi	toneal immatur	re teratoma	 	103
_		agnostic algo			
Figure 3.23	3 pseuodp	ancreatic cyst		 •	104
		diagnostic			
Figure 4.1	illustrativ	e cases. Case n	o.1	 •	105
Figures 4.2	2 & 4.3 ill	ustrative cases.	Case no.2	 	106
Figures 4.4	& 4.5 ill	ustrative cases.	Case no.3	 	107
Figures 4.6	illustrativ	ve cases. Case n	o.4	 	108
Figures 4.7	' illustrati	ve cases. Case r	no.5	 	109
Figures 4.8	illustrati	ve cases. Case 1	no.6	 	110
Figures 4.9	illustrati	ve cases. Case 1	no.7	 	111
Figures 4.1	0 illustrat	tive cases. Case	no.8	 	112
Figures 4.1	1 illustrat	tive cases. Case	no.9	 	113
Figures 4.1	2illustrati	ive cases. Case	no.10		114

List of abbreviations

CT	Computed tomography
PV	Portal vein
CBD	Common bile duct
GB	Gall bladder
CHD	Common hepatic duct
CECT	Contrast enhanced computed tomography
SMV	Superior mesenteric vein
SMA	Superior mesenteric artery
IVC	Inferior vena cava
IV	Intravenous
AFP	Alpha fetoprotein
PUJO	Pelviureteric junction obstruction
MCDK	Multicystic dysplastic kidney
CMN	Congenital mesoblastic nephroma
NHL	Non hodgkin lymphoma
MDCT	Multidetector computer tomography
US	Ultrasound

INTRODUCTION

Focal Pelvi abdominal masses are common in pediatric patients. The affected patients are presented with variable symptoms and physical examinations are also variable depending on location and mass effect on adjacent organs.

The symptoms in these patients can be abdominal pain, bowel obstruction, or fever if the underlying cause is infection (Katz and Richardson, 2019).

The discovery of an abdominal mass in a child is a cause for clinical concern because of the possibility of an underlying malignancy. In addition, even non-malignant conditions can pose serious problems when adjacent structures such as nerves, blood vessels and loops of bowel are compressed by the growing masses (Nwokoro et al., 2015).

The critical clinical questions to the radiologists in the setting of abdominal masses are the site of origin, benign versus malignant criteria. Pairing clinical presentation with imaging findings helps to reach to the diagnosis (**Katz and Richardson**, 2019).

Introduction

Although ultrasound is the imaging modality of choice for initial evaluation of focal abdominal masses in children, CT is subsequently obtained for confirmation and for further characterization. (Katz and Richardson, 2019).

The information obtained by CT, in a single noninvasive examination emitting minimal ionizing radiation, seems comparable to that offered by a combination of multiple radiological and imaging procedures. It is conceivable that with accumulating experience and further technological improvement CT may become an excellent procedure in the investigation of abdominal and pelvic masses in children (**Akembhavi et al.,2015**).

Aim of Work

AIM OF THE WORK

To review the different pelviabdominal masses encountered in pediatric age group, with emphasis on the imaging features that help to differentiate them. And to propose a practical algorithm for approaching the diagnosis of these lesions.

Chapter 1

Anatomy of the solid Pelvi Abdominal organs:

THE LIVER

Liver is divided into right and left lobes by the falciform ligament. Each lobe is divided into 2 sectors. The right hepatic vein (RHV) divides the right lobe into anterior and posterior sectors, the left hepatic vein (LHV) divides the left lobe into medial and lateral sectors (Siegelman, 2010).

Couinaud classification:

The Couinaud classification of liver anatomy divides the liver into eight functionally independent segments. Each segment has its own vascular inflow, outflow and biliary drainage. In the centre of each segment there is a branch of the PV, HA and bile duct. In the periphery of each segment there is vascular outflow through the hepatic veins.

RHV divides the right lobe into anterior and posterior segments. MHV divides the liver into right and left lobes (or right and left hemi-liver). This plane runs from the IVC to the GB fossa. LHV divides the left lobe into a medial and lateral part, PV divides the liver into upper and lower segments. The left and right PVs

branch superiorly and inferiorly to project into the center of each segment (Siegelman, 2010).

Liver Segments numbering:

There are eight liver segments. Segment 4 is divided into segment 4a and 4b. The numbering of the segments is in a clockwise manner. Segment 1 (caudate lobe) is located posteriorly. (Siegelman, 2010).

Radiological anatomy of the liver:

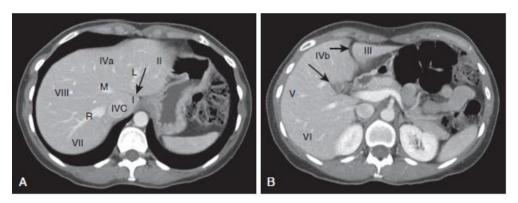


Fig. (1.1): Normal segmental anatomy of liver on CT. A, Axial contrast-enhanced CT image through liver above plane of portal vein shows right (R), middle (M), and left (L) hepatic veins between hepatic segments that drain to inferior vena cava (IVC). Note fissure for ligamentum venosum (arrow) anterior to caudate lobe (I), as well as lateral (II), medial (IVa), anterior (VIII), and posterior (VII) segments. B, Axial contrast-enhanced CT image through liver below plane of portal vein shows left intersegmental fissure (short arrow) and interlobar fissure (long arrow), as well as lateral (III), medial (IVb), anterior (V), and posterior (VI) segments. (Siegelman, 2010).