

ASSESSMENT OF AN INTEGRATED PEST MANAGEMENT PROGRAM FOR THE CONTROL OF THE WHITEFLY *BEMISIA TABACI* (GENN.) ON CANTALOUPE CULTIVARS

A Thesis submitted to the Department of Entomology, Faculty of Science,
Ain Shams University for the award of the Ph.D. Degree
Entomology

By Yomna Nabil Mohamed Abd Allah

Assistant Researcher - Plant Protection Research Institute
M.Sc.Zoology (Entomology)-Faculty of Science - Zagazig University

Supervisored by

Prof Dr. Bahira Mahmoud El Sawaf

Emeritus Professor of Entomology - Entomology Department - Faculty of Science-Ain Shams University

Prof Dr. Baraka Mohsen Refaei

Professor of Entomology- Entomology Department - Faculty of Science - Ain Shams University

Prof Dr. Samia Ahmed Galal Metwally

Emeritus Chief Researcher- Vegetables, Ornamental, Medicinal and Aromatic Plant Pests Research Department- Plant Protection Research Institute.-Agricultural Research Center

Prof Dr. Soad Ali Ibrahim

Emeritus Chief Researcher- Vegetables, Ornamental, Medicinal and Aromatic Plant Pests Research Department- Plant Protection Research Institute.-Agricultural Research Center

(2019)

ASSESSMENT OF AN INTEGRATED PEST MANAGEMENT PROGRAM FOR THE CONTROL OF THE WHITEFLY BEMISIA TABACI (GENN.) ON CANTALOUPE CULTIVARS

A Thesis submitted to the Department of Entomology, Faculty of Science,
Ain Shams University for the award of the Ph.D. Degree

Entomology

By Yomna Nabil Mohamed Abd Allah

Assistant Researcher - Plant Protection Research Institute

M.Sc.Zoology (Entomology)-Faculty of Science - Zagazig University

(2019)

Approval sheet

(Ph.D. Thesis)

Name: Yomna Nabil Mohamed Abd Allah

Title: ASSESSMENT OF AN INTEGRATED PEST MANAGEMENT PROGRAM FOR THE CONTROL OF THE WHITEFLY *BEMISIA TABACI* (GENN.) ON CANTALOUPE CULTIVARS

Supervisions committee:

Prof Dr. Bahira Mahmoud El Sawaf

Emeritus Professor of Entomology - Entomology Department - Faculty of Science- Ain Shams University

Prof Dr. Baraka Mohsen Refaei

Professor of Entomology-Entomology Department - Faculty of Science - Ain Shams University

Prof Dr. Samia Ahmed Galal Metwally

Emeritus Chief Researcher - Plant Protection Research Institute.-Agriculture Research Center

Prof Dr. Soad Ali Ibrahim

Emeritus Chief Researcher - Plant Protection Research Institute.-Agriculture Research Center

Examination committee:

Prof Dr. Nawal Zohdy Mohamad Zohdy

Emeritus Professor of Pest Control - Entomology Department - Faculty of Science - Cairo University

Prof Dr. Monir Mohmmed El-Husseini

Emeritus Professor of Pest Control – Department of Economic Entomology and Pesticides - Faculty of Agriculture – Cairo University

Prof Dr. Bahira Mahmoud El Sawaf

Emeritus Professor of Entomology - Entomology Department - Faculty of Science - Ain Shams University

Prof Dr. Samia Ahmed Galal Metwally

Emeritus Chief Researcher - Plant Protection Research Institute.-Agriculture Research Center

2019

Biography

Name: Yomna Nabil Mohamed Abd Allah

Awarded degrees:

- 1- B.SC. (Entomology), Faculty of Science Zagazig University
- 2- M.Sc. Zoology (Entomology)-Faculty of Science Zagazig University

Occupation: Assistant Reseacher, Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt

Department: Entomology

College: Faculty of Science

University: Ain Shams University

Date of graduation: 2019

E mail: Yomnanabil01@gmail.com

Date of Appointment: 9-9

Date of Registration: 2019

Acknowledgements

First of all, I would like to thanks "ALLAH" El Ali El Qadeer to whom I pray to enable me to finish successfully this work, and accomplish successfull life.

I would like to express my deep appreciation to my supervisor *Prof. Dr. Bahira Mahmoud El Sawaf*, Professor of Entomology, Entomology Dept., Faculty of Science, Ain Shams University for her keen and close supervision, sincere help, outmost patience, energetic help, illuminating advices, helpful discussion, continuous guidance, being a pillar of support and being patient enough, supporting me throughout the hard times and helping to overcome difficulties throughout the present study.

I am also greatly indebted to *Prof. Dr. Samia A. Galal Metwally*, Chief Researcher, Vegetables, Ornamental, Medicinal and Aromatic Plant Pests Research Dept., Plant Protection Research Institute, Agricultural Research Center for suggesting the point of the present study, supervision, the scientific valuable criticism, revising manuscript, great help, advice and continuous encouragement throughout the period of this work.

I am deeply indebted with thanks and gratitude to *Prof. Dr. Baraka Mohsen Refaei* Professor of Entomology, Entomology Dept., Faculty of Science, Ain Shams University for her sincere help, scientific valuable advices and really care for success of this work. *Prof. Dr. Baraka*, you have been so much than a supervisor during the most difficult times.

I also, thank *Prof. Dr. Soad Ali Ibrahim* Chief Researcher Vegetables, Ornamental, Medicinal and Aromatic Plant Pests Research Dep., Plant Protection Research Institute, Agricultural Research Center for her supervision, helping, assistance, revising manuscript and kind encouragement during the progress of this study.

I express my deepest thanks and gratitude to most esteemed guide *Prof. Dr. Mohamed Abou Setta*, Chief Researcher, Scale Insects and Mealybug Department, Plant Protection Research Institute, ARC for his keen assistance, encouragement, advising me, statistical analysis of the data, providing great help, guidance and sincere care for success of my work.

My deep thanks and gratitude to late *Prof. Dr. Ahmed Kottob*, Chief Researcher, Horticultural Research Institute, ARC for providing cantaloupe seeds and invaluable assistance throughout this work.

I would like to express my deep thanks also to *Prof. Dr. Youssef Ezz-Eldin Youssef Abdallah*, Professor of Economic Entomology, Faculty of Agriculture, Ain- Shams University for his sincere assistance, statistical analysis, encouragement and precious advice during the progress of this study.

My appreciation and grateful is due to *Abdallah Masoud El-Sayed*, Assistant Researcher, Desert Research, Center, ARC for his great help, facilities solutions for many difficults throughout the period of the work, unconditional support and statistical analysis of the data.

I am grateful to *Dr. Asharaf Said Elhalawany*, Researcher, Fruit trees Acarology, Plant protection Research Institute, ARC for continuous support, sincer help and great effort in stastical analysis of the data.

Deep thanks are also due to *Reda Sebaey*, Assistant Researcher, Plant Protection Research Institute, ARC for his sincer help, and great support during the period of field study in the Experimental Farm at Qaha, Qalyubiya Governorate.

My work would not have been conducted without the help of the staff members of Qaha Farm, for all their assistance throughout the work.

Sincere thanks and gratitude to *Heba Samir Rafea*, Assistant Researcher, Plant Protection Research Institute, ARC for her great support and help in presenting the obtained results is appreciated.

My thanks extend to *Prof. Dr. Hanan Seddiek Abd elaziz*, Chief Researcher, Plant Protection Research Institute, ARC for her great support, knowledge and encouragement, during this work to come out.

Sincere thanks to all the staff members of Vegetables, Ornamentals, Medicinal and Aromatic Plant Pests Research Department, Plant Protection Research Institute, ARC for sincere help, continuous encouragement and great support throughout the period of study.

Deep thanks and gratitude are also extended to all my colleagues in Plant Protection Research Institute, ARC for cooperation, sincere help and continuous encouragement.

Finally, deep gratefulness, special thanks and great appreciation to my lovely mother, dear father, brother, sisters, nephwes and all my family members.

Dedicated to

Allah El Ali El Qadeer

followed bY

my lovely mother, dear father,

brother, sisters and my nephews

Eyad and Aysel

LIST OF CONTENTS

Title	Page
ABSTRACT	
1.INTRODUCTION	1
2. LITERATURE REVIEW	7
2.1. Distribution and effect of <i>B. tabaci</i> damage on different	7
cultivated crops	/
2.2. Relative susceptibility of different cantaloupe cultivars and	
growth stages to infestation with B. tabaci in respect to	8
physiological and morphological traits	
2.3. Effect of different sowing dates, climatic factors and plant	20
age on <i>B. tabaci</i> infestation	
2.4. Effect of different rates of inorganic fertilizers on <i>B. tabaci</i>	27
population 2.5.Effect of aromatic plants on the population of <i>B. tabaci</i>	29
3. MATERIALS AND METHODS	_
	33
3.1.Field studies	33
3.1.1. Impact of the four tested cultivars on infestation of	34
cantaloupe with the whitefly; <i>B. tabaci</i> and the resultant yield	
3.1.2. Effect of cantaloupe growth stages on the whitefly; <i>B. tabaci</i> preference	35
3.1.3.Interaction between different sowing dates and	
cantaloupe cultivars on the whitefly; B. tabaci and the	36
resultant yield	30
3.1.4. Interaction between different sowing dates, certain	
weather variables and plant age on the whitefly, B. tabaci	37
activity	
3.1.5. Effect of different rates of inorganic fertilizers on <i>B</i> .	37
tabaci infestation and the resultant yield	31
3.1.6. Intercropping cantaloupe with certain non-host aromatic	39
plants	
3.2. Laboratory studies	43
3.2.1.Morphological aspects as shown by scanning electron	
micrograrphs	43
merographs	
3.2.1.1.Morphological features in respect to trichome	43
analysis; leaf trichomes density and length	43
3.2.1.2. Morphological aspects in respect to leaf stomata	4.4
density and dimensions	44
3.2.2. Physiological studies	45
3.2.2.1.Chemical analysis of the four tested cultivars to	15
determine certain biochemical elements and moisture content	45
3.2.2.2. Chemical analysis of the four cultivars to determine	51
certain enzymes	<i>J</i> 1

3.3. Meteorological data	54
3.4. Data analysis	54
4. RESULTS	56
4.1. Assessment the performance of cantaloupe cultivars under	56
B. tabaci attack	30
4.1.1. Preference of cultivars for oviposition over 2015	56
4.1.2. Preference of cultivars for nymphal infestation over	57
2015	31
4.1. 3. Preference of cultivars for oviposition over 2016	59
4.1.4. Preference of cultivars for nymphal infestation over	60
2016	00
4.1.5. Preference of cultivars for oviposition over 2017	62
4.1.6. Preference of cultivars for nymphal infestation over	63
2017	03
4.1.7. Preference of cultivars for oviposition and nymphal	65
infestation over the three studied seasons	03
4.1.8 Effect of infestation rates on the resultant yield	66
4.2. Effect of cantaloupe growth stages on the whitefly; <i>B</i> .	69
tabaci preference	09
4.2.1. Difference between the four cantaloupe cultivars in	69
early and late stages in relation to oviposition preference	09
4.2.2. Difference between the four cantaloupe cultivars in	70
early and late stages in relation to nymphal infestation.	70
4.2.3. Preference of cantaloupe stages for oviposition and	72
nymphal infestation	12
a. Preference of stages for oviposition	72
b. Preference of stages for nymphal infestation	72
4.3. B. tabaci infestation in relation to morphological aspects and	73
biochemical constitutes of cantaloupe cultivars	13
4.3.1.Morphological characters as shown by scanning electron	
microscope (SEM)	73
4.3.1.1. Effect of leaf trichomes density and length in	
cantaloupe cultivars on laying <i>B. tabaci</i> eggs in the early stage	74
cantaloupe cardinals on all miles. Tablet offs in the ourly stage	

4.3.1.2. Effect of leaf trichomes density and length in cantaloupe cultivars on laying <i>B. tabaci</i> eggs in the late stage	78
4.3.1.3. Oviposition preference in relation to trichomes in cantaloupe early and late stages	82
4.3.1.4. Leaf stomata in cantaloupe cultivars	83
4.3.2. Leaf chemical compositions, moisture content and enzymes in cantaloupe cultivars and <i>B. tabaci</i> infestation	92
4.3.2.1. Biochemical elements and moisture contents in the tested cultivars in cantaloupe early and late stages	92
a.Total protein	92
b. Total carbohydrates	93
c. Moisture content	94
d. Reduced sugars	95
e. Non-reducing sugars	96
f. Total sugars	97
g. Potassium	98
h. Phosphorous	99
i. Total phenols	100
4.3.2.2. Enzymes activity in the tested cultivars in cantaloupe early and late stages	101
a. Alpha-esterases	101
b. Phenoloxidase	102
c. Peroxidase	103
4.3.2.3.Correlation between biochemical elements and nymph infestation in cantaloupe early and late stages	105
4.3.2.4.Correlation between biochemical elements, moisture content and enzymes activity and nymphs infesting the four cantaloupe cultivars	107
4.3.2.5. The role of tannin in relative resistance of cantaloupe cultivars against <i>B. tabaci</i> infestation	110
4.4. Interaction effect of cantaloupe cultivars and sowing date on <i>B. tabaci</i> infestations and yield parameters	111
4.4.1. Oviposition preference of <i>B. tabaci</i> in relation to cantaloupe sowing date and cultivars over three seasons	111
4.4.2. Nymphal infestation of <i>B. tabaci</i> in relation to cantaloupe sowing date and cultivars over three seasons	117
4.4.3. Interaction between cantaloupe cultivars and sowing date on the resultant yield	123

4.5. Interaction between certain weather factors and plant age on	125	
B. tabaci infestation		
4.5.1. Effect of weather factors and plant age on deposited <i>B</i> .	125	
tabaci eggs in different sowing dates	123	
4.5.2. Effect of weather factors and plant age on nymphal	136	
activity in different sowing dates	130	
4.6. B. tabaci infestation and yield production in relation to	143	
inorganic fertilization (NK)	143	
4.6.1. Effect of different inorganic fertilization rates on nymphal	143	
infestation	143	
4.6.2. Effect of the combination of inorganic fertilizer rates on	147	
cantaloupe yield	147	
4.7. Reducing <i>B. tabaci</i> infestations using intercropping with	149	
three non- host aromatic plants		
4.7.1.Effect of intercropping cantaloupe on <i>B. tabaci</i>	149	
oviposition preference	177	
4.7.2. Effect of intercropping cantaloupe on <i>B. tabaci</i> nymphal	151	
infestation	131	
5. DISCUSSION		
CONCLUSIONS AND RECOMMEDNATIONS		
6. SUMMARY	172	
7. REFERENCES	182	
ARABIC SUMMARY		

LIST OF TABLES

No.	Title	Page
1	Mean numbers (±SE) of <i>B. tabaci</i> eggs and nymphs per leaf of	
	four cantaloupe cultivars in the field over 2015 summer	58
	plantation season.	
2	Mean numbers (±SE) of <i>B. tabaci</i> eggs and nymphs per leaf of	
	four cantaloupe cultivars in the field over 2016 summer	61
	plantation season.	
3	Mean numbers (±SE) of <i>B. tabaci</i> eggs and nymphs per leaf of	
	four cantaloupe cultivars in the field over 2017 summer	64
	plantation season.	
4	Effect of <i>B. tabaci</i> infestation on the resultant yield of the four	67
	cantaloupe cultivars over 2015.	
5	Mean numbers of stomata/1mm ² and dimensions (length and	
	width) (µm) of cantaloupe cultivars in relation to mean	85
	\pm SE of <i>B. tabaci</i> egg numbers in the early stage over	
	2019 summer plantation.	
6	Correlation between biochemical components and nymphal	106
	infestation in cantaloupe early and late stages.	
7	Correlation between enzymes activity and nymphal	106
0	infestation in cantaloupe early and late stages.	
8	Correlation coefficient (r) between certain leaf chemical	
	compositions, moisture content and enzymes in leaves	109
	of four cantaloupe cultivars and mean count of <i>B. tabaci</i>	
9	nymphs in 2016. <i>B. tabaci</i> mean number of eggs/leaf on different cultivars over	
	three summer plantation sowing dates (2015).	112
10	B. tabaci mean number of eggs/leaf on different cultivars over	
	three summer plantation sowing dates (2016).	113
11	B. tabaci mean number of eggs/leaf on different cultivars over	
	three summer plantation sowing dates (2017).	114
12	Average of <i>B. tabaci</i> eggs/leaf on the four cultivars over 2015,	115
	2016 and 2017 three summer plantation sowing dates.	116
13	B. tabaci mean number of nymphs/leaf on different cultivars	117
	over three summer plantation sowing dates (2015).	117
14	B. tabaci mean number of nymphs/leaf on different cultivars	110
	over three summer plantation sowing dates (2016).	119

15	B. tabaci mean number of nymphs/leaf on different cultivars	120
	over three summer plantation sowing dates (2017)	120
16	Average of <i>B. tabaci</i> nymphs/leaf on different cultivars over	
	2015, 2016 and 2017 three summer plantation sowing	122
	dates.	
17	Mean of yield production (kg) per plot of cantaloupe cultivars	124
	over three summer plantation sowing dates (2015).	121
18	Mean values of temperatures and relative humidity	
	registered in the weeks of sampling of <i>B. tabaci</i> eggs or	4.00
	nymphs on cantaloupe in the three sowing dates over	130
	2015 summer plantation season in Qaha, Qalyubiya	
10	Governorate.	
19	Multiple regression of abiotic factors and plant age on B.	131
20	tabaci egg numbers in different sowing dates over 2015.	
20	Mean values of temperatures and relative humidity registered	
	in the weeks of sampling of <i>B. tabaci</i> eggs or nymphs	132
	on cantaloupe in the three sowing dates over 2016	132
	summer plantation season in Qaha, Qalyubiya Governorate.	
21	Multiple regression of abiotic factors and plant age on <i>B</i> .	
21	tabaci egg numbers in different sowing dates over 2016.	133
22	Mean values of temperatures and relative humidity registered	
	in the weeks of sampling of <i>B. tabaci</i> eggs or nymphs	
	on cantaloupe cultivars in the three sowing dates over	134
	2017 summer plantation season in Qaha, Qalyubiya	131
	Governorate	
23	Multiple regression of abiotic factors and plant age on B .	105
	tabaci egg numbers in different sowing dates over 2017.	135
24	Multiple regression of abiotic factors and plant age on B.	
	tabaci nymphal infestation in different sowing dates	140
	over 2015.	
25	Multiple regression of certain abiotic factors and plant age on	
	B. tabaci nymphal infestation over 2016 summer	141
	plantation season.	
26	Multiple regression of abiotic factors and plant age on B.	
	tabaci nymphal infestation over 2017 summer	142
	plantation season.	

LIST OF FIGURES

No.	Title	Page
1	Display distribution of whitefly; B. tabaci world wide.	8
2	The four tested cantaloupe cultivars.	35
3	Intercropping of cantaloupe with aromatic plants.	42
4	Scanning Electron Microscope Model Quanta 250 FEGF.	44
5	Mean numbers (±SE) of B. tabaci eggs and nymphs per leaf	
	on the four cantaloupe cultivars over 2015 summer plantation season.	59
6	Mean numbers (±SE) of <i>B. tabaci</i> eggs and nymphs per leaf	62
	in the four cultivars over 2016 summer plantation season.	02
7	Mean numbers (±SE) of <i>B. tabaci</i> eggs and nymphs per leaf in the four cantaloupe cultivars over 2017 summer plantation season.	65
8	Average mean numbers (\pm SE) of <i>B. tabaci</i> eggs and nymphs per leaf on the four cantaloupe cultivars over summer plantation season of 2015, 2016 and 2017.	66
9	Weight of cantaloupe fruits of the tested cultivars over 2015 summer plantation season.	68
10	Correlation between mean number of <i>B. tabaci</i> eggs and nymphs and cantaloupe weight over 2015.	68
11	Difference between the four cultivars in early and late stages in relation to oviposition preference over 2015, 2016 and 2017.	70
12	Difference between the four cultivars in early and late stages in relation to nymphal infestation over 2015, 2016 and 2017.	71
13	Mean number of <i>B. tabaci</i> eggs and nymphs in early and late cantaloupe stages over 2015, 2016 and 2017.	73
14	Correlation between mean number of trichomes/1 mm ² and eggs on Arava, Majus, Darvina and Royal 481cultivars in the early stage.	75
15	Correlation between mean trichomes length (µm) and eggs on Arava, Majus, Darvina and Royal 481 cultivars in the early stage.	75
16	Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Arava cultivar during the early stage.	76
17	Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Majus cultivar during the early stage.	76
18	Scanning electron micrographs of cantaloupe leaf showing trichomes density and length in Darvina cultivar during the early stage.	77