Groundwater in New Valley and kidney disease.

Thesis

Submitted for partial fulfillment of Master

Degree in Nephrology By

DR. Hussein Ahmed Hussein Ahmed
M.B.B.CH - MRCP.

Under Supervision of

Prof. Dr. Howayda Abd-Elhamid ELShinnawy

Professor of Internal Medicine and Nephrology

Prof. Dr. Tamer Wahid Elsaid

Assist. Professor of Internal Medicine and Nephrology.

Faculty of Medicine

Ain Shams University

2019

First and foremost thanks to ALLAH, the Most Merciful.

I would like to express my profound gratitude and sincere, appreciation to

Prof.Dr. Howaida Abd-ElhamidELShinnawy

, Professor of Internal Medicine & Nephrology, Faculty of Medicine Ain Shams University, who gave me the privilege of working under her supervision.

No words of thanks or gratitude are sufficient to express my deepest gratitude to

Prof.Dr. Tamer Wahid Elsaid

professor of Internal Medicine & Nephrology, Faculty of Medicine Ain Shams University. For his great help and for his valuable advices and sincere support, for doing this research.

I would like to dedicate this Thesis to my FATHER& the soul of my

MOTHER;

to them I will never find adequate words to express my gratitude.

Also to my **FAMILY**

for dealing so patiently, tactfully during this work.

Contents

Subject	Page
List of figures	5
List of tables	6
List of abbreviations	8
Introduction	10
Aim of the work	12
Review of literature	13
Chapter (1): Groundwater Potentiality and	13
Suitability for Drinking in the New Valley.	
Chapter (2): Groundwater and Chronic Kidney	27
disease of unknown etiology.	
Chapter (3): Groundwater and stone formation in	55
the kidney.	
Material and methods	66
Results	71
Discussion	88
Summary and Conclusion	96
Recommendations	98
References	99
Arabic summary	117

List of figures

Number	Name	Page
Figure 1	Map of Egypt showing the location of the studied areas	15
Figure 2	Studied wells in ElKharga	15
Figure 3	Studied wells in ElDakhla Oasis	15
Figure 4	The national distribution of CKDU	28
Figure 5	Final common pathway of causing renal tubular damage in persons with CKDmfo.	53
Figure 6	Relation between age and creatinine in whole studied cases.	83
Figure 7	Relation between age and eGFR in group A.	84
Figure 8	Relation between age and eGFR in group B.	84

List of Tables

Number	Name	page
Table 1	Frequency of iron concentration in the	17
	investigated groundwater wells	17
Table 2	Frequency of pH values in the groundwater of the	18
	New Valley	10
Table 3	Frequency of average of TDS value in the	19
Table 3	groundwater of the New Valley	
Table 4	Frequency of the average Mn values in the	20
Table 4	groundwater of the New Valley.	20
Table 5	Frequency of average of sulphate values in the	21
Tuble 5	groundwater of the New Valley	21
Table 6	Frequency of average Cl- values in the groundwater	22
Tuble	of the New Valley	
Table 7	Frequency of average of HCO3- values in the	23
	groundwater of the New Valley	
Table 8	Frequency of EC values in the groundwater of the	24
Table 0	New Valley	
Table 9	Frequency of SAR values in the groundwater of the	25
1 avic 9	New Valley	
Table 10	Frequency of RSC values in the groundwater of the	26
	New Valley	
Table 11	A comparison of mineral and micronutrient	52

	constituents of a banana compared with constituents	
	of 2.0 L of normal drinking water	
Table 12	Basic demographics for age and gender for all	=4
	studied healthy subjects groups.	71
Table 12	Basic demographics of all studied CKD pateints	71
Table 13	groups.	71
Table 14	Laboratory parameters in healthy subjects group.	72
Table 15	Laboratory parameters for all CKD pateints group.	73
Table 16	Laboratory parameters for healthy subjects group	76
Table 16	age 1.	70
Table 17	Laboratory parameters for healthy subjects group	77
Table 17	age 2.	77
Table 18	Laboratory parameters for healthy subjects group	78
Table 16	age 3.	70
Table 19	Laboratory parameters for healthy subjects group	70
Table 19	age 4.	79
Table 20	Laboratory parameters for healthy subjects group	80
Table 20	age 5.	80
Table 21	Regression analysis of studied variables (age and	74
Table 21	gender) versus serum creatinine in all groups	/4
Table 22	Regression analysis of studied age and gender versus	75
Table 22	eGFR as dependent variable in healthy subjects.	15
Table 22	Prevalence of CKD patients among healthy subjects	77
Table 23	(group A and B)	77
Table 24	Groundwater and Nile water samples analysis	78
i		

Abbreviations

NSAS	The Nubian sandstone aquifer system
WHO	World health organization
FAO	Food and agriculture organization
TDS	total dissolved salts
Mn	Manganese
Cl	Chloride
EC	Electric conductivity
SAR	Sodium adsorption ratio
RSC	Residual sodium carbonate
CKDU	Chronic Kidney Disease of unknown etiology
NCP	The North Central Province
MAL	maximum-allowed limits
F	Fluoride
As	Arsenic
ATP	Adenosine triphosphate
PO ³	Phosphate
K	Potassium
Cl	Chloride
Ca	Calcium
Mg	Magnisium
CKDmfo	chronic kidney disease of multifactorial origin
KSD	Kidney stone disease

IDD	Iodinedeficiency disorders
CKD	Chronic kidney disease
Egfr	Estimated glomerular filtration rate
OPC	Outpatient clinic
RBCs	Red blood cells
MDRD	Modification of Diet in Renal Disease

ABSTRACT

Background: This study was performed to assess the possible association between groundwater and kidney disease in new valley governorate.

Methods: This hospital-based cross-sectional observational study was conducted at the Department of Nephrology, Ain Shams University, Cairo, Egypt, during the period from August 2018 to January 2019. After obtaining verbal consent from all participants; the general information of each participant was recorded, full history taken and general examination was done for each participant, then urine samples and serum blood samples taken for urine analysis, serum urea and serum creatinine, then estimated glomulurar filtratin rate (eGFR) was calculated for healthy subjects groups using MDRD Equation; after that three different groundwater samples and Nile water sample collected and analyzed for different solutes and heavy metals contents.

Result: Our data suggests that rural community as in Eldakhla; which depends on groundwater supply may affected by more risk of CKD than urban community as in Cairo city, which depends on Nile water supply.

Conclusion : there are increased prevalence of CKD in New Valley governorate and this may be due to groundwater consumption .

Keywords: New valley governorate, groundwater, chronic kidney disease.

Introduction

Groundwater having complex contaminant sources were investigated, these investigations were done on heavy metals loads and other hydrochemical constituents. it was found that Na⁺, K⁺, and Ca²⁺ ions are the dominant cations in the groundwater, while HCO₃⁻, F⁻ and Cl⁻ ions dominate the anionic part of the groundwater. Compositional analysis for heavy metals has identified that groundwater can be contaminated by cadmium, Lead and Chromium elements. Heavy metals are considered as a threat for human population because they have the tendency to accumulate in the body and cause variety of diseases affecting liver and kidney, as well as associated with cancer.(Singh.2018)

Moreover Groundwater used for drinking has been shown to be contaminated with naturally occurring inorganic arsenic and other metals, Metal-contaminated drinking water is the biggest threat to public health in some countries such as Bangladesh. Toxic metals present in the drinking water have a strong relationship with chronic diseases in humans.(Chandrajith,2011-

Cárdenas,2013- Panhwar,2016- Abeywickarama,2016- Jinlong,2017- Tanu,et,al.,2018- Edirisinghe,2018-).

Groundwater will normally look clear and clean because the ground naturally filters out particulate matter. But, natural and human-induced chemicals can be found in groundwater. As

groundwater flows through the ground, metals such as iron and manganese are dissolved and may later be found in high concentrations in the water. (U.S Department of the Interior, 2016).

Iron is the most common water problem dealt with by homeowners with well water. Unfortunately, iron is also difficult to treat to a satisfactory level (WellWaterGuide.net,2017).

Aim of the work

- 1-To determine the possible association between groundwater consumption and kidney disease in New Valley.
- 2-To analyze the groundwater elements in New Valley compared to Nile water.

Chapter (1)

Groundwater Potentiality and Suitability for Drinking in the New Valley

Egypt is facing increasing water demand by the rapidly growing population, increased urbanizations, higher standards of living and the agricultural policy which emphasizes expanding crop production in order to feed the growing population. The Western Desert of Egypt is considered as important area for expansion depending on the groundwater resources. The groundwater needs more studies regarding its quantity, quality and sustainability for irrigation and drinking purposes. The Nubian sandstone aquifer system (NSAS) is considered as one of the most significant and drinkable groundwater basins in the world; it is the only water resource for most of the areas sharing its valuable reserve. It extends over a vast area in Egypt, Libya, Sudan and Chad. The area occupied by the aquifer extends between lat 15° and 25° N and long 20° and 35° E. The area of the Nubian aquifer system of Eastern Sahara is about 2.35 millionskm2. It encompasses some 850000 km2in Egypt (670000 km2 in Western Desert, including the area known as Wadi Elgidid (New Valley).

Location of study area:

The New Valley located on the south western part of Egypt (Figure 1), shares the international borders with Libya to the west and Sudan to the south. It is divided into 5 counties (marakzs) which comprise 5 cities, 37local units and 164 villages. The area of the New Valley is about 440,098 km2, equivalent to 44% of the total area of Egypt and about 66% of the area of Western Sahara. It includes El Kharga, Baris, El Dakhla, Gharb Elmohoub, Abo Monqar and El Farafra Oasis.

The results of the census in 1996 that the population had reached 141,774 people, an the rate of population growth was 2.3%. In 2010, the population density on the total area is 0.5 per one km2 and on the inhabited area of 166 inhabitants per 1 km2. The present study deals mainly with the El Kharga and El Dakhla Oases which are considered the major Oases in the New Valley governorate. El Kharga Oasis is located about 230 km South-West of Assiut occupying about 86223 km2 with the population reached 80173 persons (2010). El Dakhla Oasis is located about 190 km west of El Kharga Oasis.

The area of El Dakhla is about 120438 km2 with population number of 81981 persons. El Dakhla Oasis was subdivided recently to El DakhlaandBalaat.