

Role of 128-slice, dual-source CT coronary angiography as a novel imaging technique in assessment of in-stent restenosis

Thesis

Submitted for partial fulfillment of MD degree in Radio-Diagnosis

Presented by Wasila Moustafa Mohammed Eldolify

M.Sc of Radio-diagnosis (Ain Shams University)

Supervised by

Prof. Dr. Hesham Mahmoud Mansour

Professor of Radio-Diagnosis Faculty of medicine Ain Shams University

Prof. Dr. Eman Ahmed Shawky Geneidi

Professor of Radio-Diagnosis
Faculty of medicine Ain Shams University

Dr. Amal Ibrahim Ahmed

Lecturer of Radio-Diagnosis
Faculty of medicine Ain Shams University

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Wesham Mahmoud Mansour**, Professor of Radio-Diagnosis Faculty of medicine Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Eman Ahmed Shawky Geneidi,** Professor of Radio-Diagnosis Faculty of medicine Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Amal Ibrahim**Ahmed, Lecturer of Radio-Diagnosis Faculty of medicine Ain

Shams University, for her great help, active participation and guidance.

Wasila Eldolify

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vii
Introduction	1
Aim of the Work	3
Review of Literature	
Coronary Artery Anatomy	4
Pathology	14
• Physics	22
Materials and Methods	26
Results	32
Case Presentation	39
Discussion	60
Summary and Conclusion	67
References	71
Arabic Summary	—

List of Tables

Table No	. Title	Page No.
Table (1):	Major types of lesions of atheroscler	rosis 15
Table (2):	CAD-RADS classification	18
Table (3):	Shows the results of MSCT a coronary angiography in the e stents	valuated 42
Table (4):	Showing variable MSCT an angiographic results in correlation stents calibers.	n to coronary
Table (5):	Advantages and pitfalls angiography	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	a. RCA, LAD and LCX in the projection / b. RCA, LAD and Loright anterior oblique projection. LAD and LCX in the lateral project	CX in the / c. RCA,
Figure (2):	MIP CT image of the right atriov groove ("C-view") demonstrates coronary artery (RCA) branches	the right
Figure (3):	MIP CT image of the left main artery (LM) circulation	
Figure (4):	Volume-rendered images show coronary artery (LM) circulation	
Figure (5):	MIP CT image of a left dominant artery system showing both the prand distal (d) portions of the LC obtuse marginal (OM), posterola ventricular (PLV), and posterior of (PDA) branches	oximal (p) X and its ateral left lescending
Figure (6):	ALCAPA in a 22-year-old man with of a syncopal event while playing se	•
Figure (7):	An anomalous origin of the LCA pulmonary artery	
Figure (8):	An anomalous origin of the LCA from sinus of Valsalva and coursing be aorta and pulmonary artery	etween the
Figure (9):	Myocardial bridging of the LAD	12
Figure (10):	A large LAD giving rise to a la branch that terminates in the right	-
Figure (11):	CAD-RADS 0	18
Figure (12):	CAD-RADS 1	19

Fig. No.	Title	Page No.
Figure (13):	CAD-RADS 2	19
Figure (14):	CAD-RADS 3	20
Figure (15):	CAD-RADS 4	20
Figure (16):	CAD-RADS 5	21
Figure (17):	CAD-RADS N	21
Figure (18):	The number of gantry rotations is cover the cardiac volume is dependent axis detector array dimensions	ident on z-
Figure (19):	Diagram showing the relation be results of MSCT and invasive angiography in the evaluated 42 st	coronary
Figure (20):	Diagram showing variable M angiographic results within 3.5 m stent caliber.	m coronary
Figure (21):	Diagram showing variable M invasive angiographic results wit coronary stent caliber	hin 3 mm
Figure (22):	Diagram showing MSCT and angiographic results within coronary stent caliber	2.75 mm
Figure (23):	Diagram showing MSCT and angiographic results within 2.5 mi stent caliber.	m coronary
Figure (24):	Curved MPR images of the LAI mid LAD stent with proximal h representing non-significant restenosis (<50%)	ypodensity in-stent

Fig. No.	Title	Page No.
Figure (25):	Invasive coronary angiography stent struts before injection (arrow) with patent stent lume the LAD artery down to its distant	of contrast on and rest of
Figure (26):	Curved MPR images of the L LCX showing patent LM stent of soft plaque in mid LAD significant stenosis. Patent I noted	with evidence causing non- LCX is also
Figure (27):	Invasive coronaryangiography stent struts before injection (arrow) with patent stent lumer and LCX arteries down to segments are seen patent	of contrast n at LM. LAD their distal
Figure (28):	Curved MPR images of the L OMB showing patent both postent and OMB stent	roximal LAD
Figure (29):	Invasive coronaryangiography stent struts before injection (arrow) with patent stent lumer LAD and OMB	of contrast n at proximal
Figure (30):	Curved MPR image shows sussimiddle segment LCX stent wit filling. Evidence of significant proximal LAD caused by calcifie	h good distal t stenosis in
Figure (31):	Invasive coronary angiograp patent LCX stent	
Figure (32):	Curved MPR image shows hypdistal to LAD stent with significations (>50%).	icant luminal

Fig. No.	Title	Page No.
Figure (33):	Invasive coronary angiography sl stent struts of the LAD before contrast (arrow) with signification restenosis after contrast injection	injection of ant in-stent
Figure (34):	Curved MPR image of the LAD stassessable long proximal stent (stent struts). LAD afterward shipatency	due to thick nows normal
Figure (35):	Invasive coronary angiograph stent struts of the LAD before contrast (arrow), patency of LAI contrast injection.	injection of O stent after
Figure (36):	Axial images show intraluminal of mid LAD stent, representing restenosis (total occlusion)	ing in-stent
Figure (37):	Invasive coronary angiograph stent struts of the LAD before contrast (arrow).	injection of
Figure (38):	Invasive coronary angiography s opacification of the LAD stent af of contrast (arrow) denoting total	ter injection
Figure (39):	Curved MPR images show pate LAD stent	-
Figure (40):	Invasive coronaryangiography patent stent lumen at LAD. The and LCX arteries down to segments are seen patent	ne LM, LAD their distal
Figure (41):	Curved MPR images show pa	tent patent

Fig. No.	Title	Page No.
Figure (42):	Invasive coronary angiography sl stent struts before injection (arrow) with patent stent lumen s	of contrast
Figure (43):	Curved MPR image shows pater stent	
Figure (44):	Curved MPR images show pater and RCA arteries	•

List of Abbreviations

Abb.	Full term
3D	. Three-dimensional
ALCAPA	. Anomalous origin of the LCA from the pulmonary artery
AM	. Acute marginal
AVN	. Atrioventricular node artery
CS	. Coronary sinus
CT	. Computed tomography
DECT	. Dual-energy CT
DES	. Drug-eluting stents
ER	. Elastic recoil
GCV	. Great cardiac vein
ISR	. In-stent restenosis
LAD	. Left anterior descending
LCX	. Left circumflex
LDL	. Low-density lipoprotein
LMCA	. Left main coronary artery
MCV	. Middle cardiac vein
MDCT	. Multi- detector row CT
NIH	. Neointimal hyperplasia
OM	. Obtuse marginal
PCI	. Percutaneous coronary intervention
PDA	. Posterior descending artery
PLV	. Posterolateral left ventricular
RCA	. Right coronary artery
ROI	. Region of interest

List of Abbreviations Cont...

Abb.	Full term
SA	Sinoatrial
SAN	Sinoatrial node artery
SMC	Smooth muscle cell
TCFA	Thin-cap fibroatheroma
TR	. Temporal resolution

Introduction

Introduction

tenting is a nonsurgical treatment of coronary artery disease. However, there is increase incidence of in-stent restenosis. To evaluate stent patency, patients are sent for invasive coronary angiography (Park et al., 2012).

Conventional coronary angiography is considered the gold standard diagnostic investigation for evaluating in-stent restenosis, but it's an invasive technique and has complications, a non-invasive tool for assessing in-stent restenosis would be of great importance to follow up patients with implanted coronary stents (Oncel et al., 2013).

Evaluation of coronary artery disease by a non-invasive MSCT angiography, provides excellent image quality, decreases patient exposure to contrast media and radiation dose is also reduced when using a prospective ECG-gated coronary CT scan and low tube voltage (Sun et al., 2012).

Assessment of coronary arteries especially peripheral vessel and the coronary stents(particularly when stent caliber is less than 3 mm) with standard coronary CT angiography is limited due to relatively poor spatial resolution, insufficient temporal resolution(which causes motion and stair step artifacts) and marked coronary calcification. So to overcome these problems, multiple new imaging techniques are developed (Haruhiko et al., 2015).

Radiation dose can be reduced by the use of step and shoot scan, iterative reconstruction, and a high pitch dualsource helical scan. Spatial resolution and diagnostic evaluation of small or peripheral coronary vessels and coronary stents can be improved by the use of high definition CT scanners. Coronary motion artifacts and temporal resolution can be improved by dual-source CT scanners and a motion correction algorithm (Haruhiko et al., 2015).

The state of the art dual-source CT scanner that was recently introduced, achieves the currently highest temporal resolution. This improvement in temporal resolution decreases motion artifacts of the coronary arteries and provides excellent image quality (Nazir et al., 2014).