

QUANTITATIVE CORONARY PLAQUE CHARACTERIZATION WITH MULTIDETECTOR CT ANGIOGRAPHY

Thesis

Submitted for partial fulfillment of M.D Degree in Radiodiagnosis

Presented by

Shaimaa Salah Mohamed Abdelrazik

(M.B., B.Ch) M.Sc, (Radiodiagnosis)

Supervised by

Prof. Dr. Ahmed Mostafa Mohamed

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Prof. Dr. Amir Louis Loka

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Ali Hagag Ali

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2019

التوصيف الكمي للترسبات داخل الشرايين التاجية باستخدام الاشعة المقطعية متعددة المقاطع

رسالة

توطئة للحصول علي درجة الدكتوراة في الأشعة التشخيصية والتداخلية مقدمة من

الطبيبة/ شيماء صلاح محمد عبد الرازق بكالوريوس الطب و الجراحة- ماجستير الأشعة التشخيصية تحت إشراف

أد/ أحمد مصطفى محمد

أستاذ الأشعة التشخيصية والتداخلية كلية الطب- جامعة عين شمس

أد/ أمير لويس لوقا

أستاذ مساعد الأشعة التشخيصية والتداخلية كلية الطب- جامعة عين شمس

د/ علي حجاج علي

مدرس الأشعة التشخيصية والتداخلية كلية الطب- جامعة عين شمس كلية الطب كلية الطب جامعة عين شمس جامعة عين شمس 2019

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to Ahmed Mostafa Mohamed, Professor of Radiodiagnosis, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Amir Louis Loka,** Assistant Professor of Radiodiagnosis,

Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Ali Hagag Ali,** Lecturer of Radiodiagnosis, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

	Subjects	Page
•	List of Abbreviations	I
	List of table	III
	List of Figures	IV
	Introduction	1
	Aim of the Work	5
	Review of literature:	
	Chapter 1: Anatomy of Coronary Vessels	6
	Chapter 2: Pathology of Atherosclerosis	24
	Chapter 3: Coronary CT in atherosclerosis	31
	Patients And Methods	49
	Results	54
	Cases	67
	Discussion	76
	Summary And Conclusion	84
	References	86
	Arabic Summary	

LIST OF ABBREVIATIONS

ACS : Acute coronary syndromes

AHA : American heart association

AOCA Anomalous origin of a coronary artery

AV Atrioventricular

CAAs Coronary artery anomalies CAC Coronary artery Calcium

CABG: Coronary artery bypass grafting

CAD : Coronary artery disease

CCTA : Coronary CT angiography Chronic Total Occlusions

ECG: Electrocardiogram

HU Hounsfield units

ICA Invasive coronary angiography

IVUS: Intravuscular ultrasound

IVUS- Ivus with virtual histology

VH

LAD: Left anterior descending

LCX : Left circumflex artery

LDL: Low-density lipoprotein

LMCA: Left main coronary artery

Lt sinus of vulsalva
Myocardial infarction

MPRs : Multiplanner reformation

NCP : Noncalcified plaques

OCT : Optical coherence tomography

PCI: Percutaneous coronary intervention

PSV: Posterior sinus of valsalva

∠List of Abbreviations

RCA: Right coronary artery

RSV : Right sinus of valsalva

SCD : Sudden cardiac death

TCFA Thin-capfibroatheroma

WL : Window levelWW Window width

LIST OF TABLE

Tab. No.	Subject	Page
Table (1)	Classification of coronary artery anomalies	21
Table (2)	able (2) Population demographics and CAD risk factors by the presence or absence	
Table (3)	Number of patients with significant coronary lesions	56
Table (4)	The prevalence of coronary plaque by age.	57
Table (5)	Gender and coronary vessel plaques	58
Table (6)	The number of vessel affection in diabetic/nondiabetic patients	60
Table (7)	Distribution of patients according to different Agatston scores	60
Table (8)	Gender and Agatston scoe range	62
Table (9)	Different types of plaques	62
Table (10)	Calcified plaques and their distribution among coronary vessels	62
Table (11)	Non-Calcified plaques and their distribution among vessels	63
Table (12)	Mixed plaques and their distribution among vessels	63
Table (13)	Plaque burden volumes of NCP and CCP by gender	64
Table (14)	Plaque burden volumes of NCP and CCP by age	65

LIST OF FIGURES

Fig. No.	Subject	Page
Fig. (1)	Anatomy of the coronary arteries of the heart	6
Fig. (2)	Anatomy of coronary arteries 2D composite	9
Fig. (3)	Scheme of normal coronary anatomy	10
Fig. (4)	Volume render image showing the ramus intermedius branch (arrow), seen arising from the trifurcation	12
Fig. (5)	Coronary anatomy showing right/left dominance variants	13
Fig. (6)	Myocardial bridge: 54-year-old man with atypical chest pain	15
Fig. (7)	(A) Bridging morphological variations (length and depth), (B) Pathophysiological factors that exacerbate myocardial bridging	16
Fig. (8)	High take-off of RCA. Maximum intensity projection coronary CT angiogram	17
Fig. (9)	A: Shepherd's crook right coronary artery; B: Schematic representation	18
Fig. (10)	Left circumflex from the right sinus of Valsalva with posterior course	19
Fig. (11)	anomalous origination of RCA.	20
Fig. (12)	Anomalous coronary courses. Sagittal CT image showing the locations of the prepulmonic, interarterial, transseptal, and retroaortic coronary artery courses. The prepulmonic variant which is oftenly seen anterior to the right ventricular outflow tract.	23

≰List of Table

Fig.	No.	Subject	Page
		Thin fibrous cap atheroma with thread like	27
Fig.	(13)	fibrous cap(arrow) separating necrotic	
		Coronary artery with stable coloifed	27
Fiσ	(14)	Coronary artery with stable calcified atherosclerotic plaque, with thick fibrous	21
rig.	(14)	cap	
.	(4.5)	Drawings of the morphology of plaque	30
Fig.	(15)	development	
Fig.	(16)	coronary artery calcifications	33
Fio.	. (17)	Different patterns of Coronary Plaques by	34
8•		CCTA.	
Fig.	(18)	Multimodality imaging of obstructive	37
		coronary soft plaque stenosis grading of CAD assessed by	38
Fig.	(19)	coronary CTA.	36
		CCTA in a 57-year-old man with	40
Fig	(20)	myocardial infarction, image of	
rig.	(20)	multiplanar reconstruction of LAD	
		showing multiple black low-density areas	
Fig.	. (21)	CT angiography plaque mapping, non-	41
		obstructive calcific plaque	12
Fig.		CT angiography plaque mapping, obstructive soft tissue plaque	42
Fig.	(23)	Invasive coronary angiography vs CCTA	43
8•	(20)	Curved planar reformat demonstrates	47
Fig.	(24)	chronic total occlusion of approximately	
		30 mm length	
Fig.	(25)	Chronic total occlusion in CCTA.	48
		Bar chart of the prevalence of coronary	55
Fig.	(26)	plaque distributed according to number of	
		affected vessels	50
Fia	(27)	Bar chart representation of patients with	59
r.ig.	(21)	positive risk factors.	

∠List of Table

Fig. No.	Subject	Page
Fig. (28)	Box plot representation of Agatston score	61
Fig. (20)	range according to age group	
Fig. (29)	Pie chart of percentage of coronary vessel	64
Fig. (29)	affection	
Fig. (30)	Pie chart of Patient's treatment plan.	66
Fig. (31)	Case 1	68
Fig. (32)	Case 2	69
Fig. (33)	Case 3	70
Fig. (34)	Case 4	71
Fig. (35)	Case 5	72
Fig. (36)	Case 6	73
Fig. (37)	Case 7	74
Fig. (38)	Case 8	75

Introduction

INTRODUCTION

Cardiovascular disease is considered a main public health problem and is the most common cause of death among men and women. (*Ilangkovan et al.*,2018)

Patients presenting to the emergency division with different causes of chest pain, it could be acute myocardial infarction (MI), non-ischaemic cardiac disease (aneurysm, dissection or pulmonary embolism) or non-cardiac disease (respiratory, oesophageal or musculoskeletal disorders). If the cause is unclear, such patients are defined as having non-specific chest pain (*Ilangkovan et al.*,2018).

For these patients, the exclusion of acute MI in the acute care setting does not exclude underlying coronary artery disease (CAD) or the associated risk of future cardiac attacks, as demonstrated by studies showing that 0.8%—2.1% of patients evaluated for MI and then discharged from emergency departments have an adverse cardiac outcome in the first 30 days after discharge (*Ilangkovan et al.*,2018).

Patients who have symptoms concerning for ischemic heart, usually proceed to stress testing with or

&List of Table

without imaging to stratify risk and plan management. These noninvasive functional tests offer improved specificity to detect ischemia, however they have limited sensitivity to detect subclinical CAD. Thus, using a more sensitive test to detect CAD will enhance risk assessment and improve patient management. (*Thomas et al.*,2015)

Coronary atherosclerosis is a progressive disease with episodic occurrence of destabilizing changes leading to plaque thrombosis and reorganization. So multiple lesions with different appearances can be present simultaneously in the same patient. (*Pugliese et al.*, 2009)

Invasive coronary angiography is considered the gold standard tool in diagnosing coronary artery disease as it provides excellent visualization of coronary lumen and a map of the coronary vessels. (*Sun and Xu*, 2014)

However, it is inherently invasive technique and can only provide an outline of the coronary lumen but cannot demonstrate the complex nature of coronary lesions, which is the main cause for the association between the imaging findings and clinical picture. (*Sun and Xu*, 2014)

IVUS and other similar imaging modalities are used to understand intracoronary plaques, and their composition,

∠List of Table

however their use is limited because of the high costs and being invasive technique. It is important to noninvasively diagnose and analyse lesions at their early degrees, particularly in asymptomatic and low-risk patients, to improve the risk stratification without depending on invasive procedures. (Sun et al., 2014)

The development of advanced CT scanners permits non-invasive coronary artery visualization with high diagnostic accuracy, reliable detection of lumen stenosis and plaque analysis. (Sun et al., 2014)

Coronary computed tomography angiography (CCTA) has good correlation with IVUS in the quantitative plaque analysis. (Sun,2017)

It has been reported that almost two thirds of acute coronary events occur in noncritical lesions (those with less than 50% lumen stenosis), highlighting the necessity for imaging modalities to characterize plaque composition (Sun and Xu, 2014)

The likeliness of a plaque to rupture and to subsequently cause vessel obstruction and myocardial infarction is known to be dependent on its composition. (Sudarski et al.,2013)