

Image Analysis of Remotely Sensed Data for Discriminating Fertile Granites in Egypt

Submitted By

Mahinaz Mohamed Shawky Ismaeil

Lecture Assistance of Computer and Information Sciences, Nuclear Materials Authority

Under the Supervision of

Prof. Dr Taha Elarif

Professor of Computer Science
Faculty of Computer and Information sciences
Ain Shams University

Prof. Dr Mohamed A.Z. El Zalaky

Professor of Geology Remote sensing and GIS Department Nuclear Materials Authority

Dr Mahmoud Elsaid Hegazy Abdelrahman

Lecturer of Geology Nuclear Materials Authority

A Thesis Submitted to
Computer Science Department, Faculty of Computer and Information
sciences, Ain Shams University
for the Degree of Doctor of Philosophy in
Computer and Information Sciences.

ACKNOWLEDGMENTS

First and for most I thank "**Allah**" for enabling me to attain new knowledge and experience through this work.

I dedicate this work to the memory of my dear father.

I wish to express my sincere appreciation to **Prof. Dr Taha Elarif**; Faculty of Computer and Information sciences, Ain Shams University; for his generous suggestions and valuable advice.

I have the greatest pleasure to express my deepest thanks, my sincere gratitude and appreciation to. **Dr Mohamed Aly Zaky El Zalaky, Dr Reda Ahmed El-Arafy** and **Dr Mahmoud Elsaid Hegazy** - Nuclear Materials Authority, for their keen supervision, continuous guidance, encouragement, support and fruitful suggestion, guidance and directions and remarkable effort also for high spirit to fulfill the best presentation of this work.

My deep gratitude to **my colleagues at work** for their cooperation and their help in conducting this work.

I would like to express my sincere gratitude to **Prof. Dr Mamdouh A.G. Hassan** my scientific spiritual father who unfortunately passed away a few months before the official Ph.D. dissertation. Prof. Dr Mamdouh believed in me like nobody else and gave me endless support. On the academic level, he taught me the fundamentals of conducting scientific research. Under his supervision, I learned how to define a research problem, find a solution to it, and finally publish the results. On a personal level, he inspired me by his hardworking and passionate attitude.

Last but not least, my gratitude and appreciation are due to **my family**, I am very grateful to **my husband**, **my daughter**, and **my son** for their understanding, and supporting. I give my deepest thanks to **my mother** and **my brother** for their continuous encouraging, worthless trust and endless support.

ABSTRACT

In the recent years, the younger granites in Egypt attracted a great of interest, due to their association with uranium anomalous and its economically important. Nuclear Materials Authority (NMA) considered the granitic rocks as one of the most important sources of uranium deposits so it conducted exploration programs to search for uranium mineralizations in Egyptian Deserts. These programs led to the discovery of radioactive anomalies and uranium mineralizations in the Northern, Central and Southern Eastern Desert of Egypt, besides Sinai.

The aim of this study is to discriminate uraniferous granite and determine the common characteristic as well as the spectral features of these granites as a template to aid the recognition of radioactive mineralization in the similar granites of Egypt. Therefore, an applicable model was designed and implemented to facilitate the manipulation of satellite image data, to support a flexible implementation of methods used to discriminate the desired granite. Moreover, this model can be applyied in other areas to successfully expect the location of the other uraniferous granites in the Egyptian Deserts.

The study relied on 1) Satellite digital images of the visible near-infrared (VNIR) and shortwave infrared (SWIR) ASTER level L1B data, and 2) Airborne data of the Uranium (eU), Thorium (eTh), Potassium (⁴⁰K) and Total Count (TC) as text files.

This study aimed to integrate the ASTER imagery and airborne gamma-ray spectrometry data and manipulate these data for providing uraniferous granitic patterns using image processing techniques; and to explore the radioactive materials in granite. It also aimed to analyze these patterns to produce accurate potential maps for the fertile granites using GIS techniques in the Central Eastern Desert, Egypt.

The appropriate atmospheric correction method in this study is the Internal Average Relative Reflectance (IARR) which provides the most closely match spectra.

For better recognizing spectral signature anomalies, Minimum Noise Fraction (MNF) transformation has been applied to figure out which bands comprehend the coherent images, therefore eliminating noise from the multispectral data through calculating the eigenvalues of the image. It is found that to remove noise with eigenvalues' value will be close to two.

Several tools and techniques have been applied on the available data for the purpose of mapping mineralization and/or alteration zones such as false color composites (FCC), band ratio (BR), principal component analysis (PCA), decorrelation stretch, spectral angle mapper (SAM) and matched filtering (MF).

The images of the study areas were categorized using the Iterative Self-Organizing Data Analysis Technique (ISODATA) unsupervised image classification method. Different small areas were chosen to represent training samples of the region of interest in

the study areas. Then, the characteristics for these samples were studied and were consequently manipulated using GIS techniques to predict potential map of the fertile Granite.

The study recommended the usage of remote sensing techniques in studying land use which is considered to be as one of the less costly and higher spatial, spectral, temporal and radiometric resolutions in studying areas.

ABBREVIATIONS

ASD	Analytical Spectral Devices
ASTER	The Advanced Spaceborne Thermal Emission And Reflection Radiometer
ASTL1B	Aster Level L1b
BIL	Band-Interleaved-By-Line
BIP	Band-Interleaved-By-Pixel
BR	Band Ratio
BSQ	Band Sequential
CC	Correlation Coefficient
CED	Central Eastern Desert
CEM	Constrained Energy Minimization
CNT	Color Normalization Transformation
Corr	Correlation Coefficient
Cov	Covariance
dB	Decibels
DN	Digital Number
DOS	Dark Object Subtraction
DS	Decorrelation Stretch
EAN	Equal Area Normalization
ED	Eastern Desert
ELM	Empirical Line Method
EM	Electromagnetic
EMS	Electromagnetic Spectrum
EROS	Earth Resources Observation And Science
ETM+	Enhanced Thematic Mapper Plus
FCC	False Color Composites
FFC	Flat Field Calibration
FFT	Fast Fourier Transform
FLAASH	Fast Line-Of-Sight Atmospheric Analysis Of Hypercubes
FPCS	Feature-Oriented Principal Component Selection
GIS	Geographic Information System
GSD	Ground Sample Distance

GUI	Graphical User Interface
IARR	Internal Average Relative Reflectance
ICA	Independent Component Analysis
IDL	Interactive Data Language
IQM	Image Quality Measure
ISODATA	Iterative Self-Organizing Data Analysis Technique
JSS	Japan Space Systems
LIDAR	Light Detection And Ranging
LPDAAC	Land Processes Distributed Active Archive Center
LR	Log Residuals
LSU	Linear Spectral Unmixing
MAE	Mean Absolute Error
METI	Japan's Ministry Of Economy, Trade And Industry
MF	Matched Filtering
MLC	Maximum/Minimum Likelihood Classifier
MNF	Minimum Noise Fraction
MS	Multispectral
MSE	Mean Square Error
MTMF	Mixture Tuned Matched Filtering
NMA	Nuclear Materials Authority
OIF	Optimum Index Factor
PCA	Principal Component Analysis
Pow	Power
PPI	Pixel Purity Index
PSNR	Peak Signal-To-Noise Ratio
QUAC	Quick Atmospheric Correction
RGB	Red, Green And Blue
ROI	Region Of Interest
RS	Radiance At Sensor
RWT	Redundant Wavelet Transform
SAM	Spectral Angle Mapper
SAR	Synthetic Aperture Radar
SFF	Spectral Feature Fitting

SID	Spectral Information Divergence
SNR	Signal-To-Noise Ratio
SSIM	Structural Similarity Index Method
Std	Standard Deviation
SWIR	Short-Wave Infrared
TIR	Thermal Infrared
USGS	United States Geological Survey
UTM	Universal Transverse Mercator
VNIR	Visible Near-Infrared
WGS	World Geodetic System
XRD	X-Ray Diffraction

TABLE OF CONTENTS

	NOWLEDGMENTS	
ABSTI	RACT	ii
ABBR	REVIATIONS	iv
TABL	LE OF CONTENTS	vii
LIST (OF FIGURES	xi
LIST (OF TABLES	xiii
CHAP'	PTER 1	1
INTRO	ODUCTION	1
1.1.	Research Question	2
1.2.	Problem Statement	2
1.3.	Research Objective	3
1.4.	Case Study Areas	4
1.5.	Used Data	5
1.6.	Previous Work	6
1.7.	Structure of the Thesis	12
CHAP'	PTER 2	13
REMO	OTE SENSING CHARACTERISTICS	13
2.1.	Electromagnetic (EM) Waves	13
2.2.	General Outline of Remote Sensing?	14
2.2	2.1. Imaging Spectroscopy	16
2.2	2.2. Interaction of Radiation with Matter	17
2.2	2.3. Imaging Spectroradiometer	19
2	2.2.3.1. The Landsat	20
,	2.2.3.2. The ASTER	20
2.3.	Remote Sensing Geology	22
2.4.	Airborne Gamma-Ray Spectrometry	24

CHAPTER 3	26
PROPOSED	26
TECHNIQUES AND ALGORITHMS	26
3.1. General Flowchart of the Thesis	26
3.2. Digital Image Processing Operations	27
3.3. Image Storage Format	28
3.4. Image Preprocessing	28
3.5. The Preprocessing of ASTER Data	29
3.5.1. Fusion	29
3.5.1.1. Gram-Schmidt Pan-Sharpen Method	29
3.5.1.2. Layer Stacking Method	30
3.6. Atmospheric Correction	30
3.6.1. Dark Object Subtraction (DOS)	32
3.6.2. Flat Field Calibration (FFC)	32
3.6.3. Internal Average Relative Reflectance (IARR)	33
3.6.4. Log Residuals (LR)	33
3.6.5. The Empirical Line Method (ELM)	34
3.6.6. Physics-Based Models	34
3.6.6.1. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLA	AASH) 35
3.6.6.2. Quick Atmospheric Correction (QUAC)	35
3.7. Mathematical Background	36
3.7.1. Mean, Variance and Covariance	36
3.7.2. The Covariance Matrix	37
3.7.3. Eigenvectors and Eigenvalues	37
3.8. Image Quality Measures	38
3.8.1. Mean Absolute Error (MAE)	38
3.8.2. Mean Square Error (MSE)	38
3.8.3. Peak Signal-to-Noise Ratio (PSNR)	38
3.8.4. Structural Similarity Index Method (SSIM)	39
3.9. Data Manipulation	39
3.9.1. Minimum Noise Fraction (MNF)	40
3.10. Image Enhancement and Analysis	41

	3.10.1.	Principal Component Analysis (PCA)	41
	3.10.2.	Band Ratio (BR)	42
	3.10.3.	Band Combination	43
	3.10.3	.1. Optimum Index Factor (OIF)	43
	3.10.4.	Decorrelation Stretch (DS)	44
3.	11. Imag	ge Classification	45
	3.11.1.	ISODATA	46
3.	12. Targ	get Detection	48
	3.12.1.	Matched Filtering (MF)	49
	3.12.2.	Spectral Angle Mapper Algorithm (SAM)	49
3.	13. Geo	graphic Information System (GIS) Technique	50
	3.13.1.	Weighted Sum	51
	3.13.2.	Weighted Overlay	51
	3.13.3.	Fuzzy Logic	52
	3.13.4.	Fuzzy Overlay Operators	52
	3.13.4	.1. Fuzzy And	52
	3.13.4	.2. Fuzzy Or	52
	3.13.4	.3. Fuzzy Product	52
	3.13.4	.4. Fuzzy Sum	52
	3.13.4	-5. Fuzzy Gamma	53
3.	14. Airb	oorne Preprocessing	53
CH	APTER 4	4	54
		O CASE STUDY:	
RES	SULTS A	AND DISCUSSION	54
4.	1. Data	a Acquisition	54
4.	2. AST	TER Satellite Preprocessing Techniques	55
	4.2.1.	Image Preprocessing Operations	55
	4.2.2.	ASTER Pre-processing	
	4.2.3.	Fuse Lower Resolution with a Higher Resolution	
	4.2.4.	Atmospheric Correction	
4.	3. Data	a Manipulation	

4.3	3.1. Minimum Noise Fraction (MNF)	68
4.4.	ASTER Satellite Processing Techniques	75
4.4	1.1. Image Processing	75
4.4	2. Optimum Index Factor (OIF)	78
4.4	3. Band Ratio (BR)	79
4.4	4.4. Principal Component Analysis (PCA)	80
4.4	4.5. Decorrelation Stretch (DC)	82
4.4	l.6. Image Classification	82
4.4	.7. Matched Filtering (MF)	83
4.5.	Airborne Data Analysis	89
4.5	5.1. Airborne Processing	89
4.6.	Geographic Information System Analysis	90
4.6	5.1. GIS Analysis	90
4.7.	Model Design and Implementation	95
4.7	7.1. "Discrimination of Fertile Granites" Model	95
CHAP.	TER 5	98
CONC	LUSION AND FUTURE WORK	98
5.1.	Conclusion	98
5.2.	Recommendations and Future Work	100
REFE	RENCES	101
. العدد،	الملذد،	1

LIST OF FIGURES

Figure 1.1: Photomap of Egypt showing the selected areas of investigation: (1) Gaba	al
Gattar, (2) El-Missikat, (3) El-Eridiya and (4) Kab Amiri.	4
Figure 1.2: Flight path specifications (Aero-Service, 1984)	5
Figure 2.1: The electromagnetic spectrum [Gonzalez and Woods, 2002]	
Figure 2.2: Passive and Active remote sensing [CCRS, 2007]	4
Figure 2.3: Different spatial resolution.	5
Figure 2.4: Location and bandwidth of ASTER bands compared to Landsat 7 bands	
[Abrams et al., 2004]	
Figure 2.5: Different radiometric resolution.	
Figure 2.6: The concept of imaging spectroscopy [Shaw and Burke, 2003]	
Figure 2.7: Interactions of energy with matter [Vito et al., 2005]	
Figure 2.8: Plot of atmospheric transmittance versus wavelength [Vito et al., 2005] 1	
Figure 2.9: Reflectance spectra curve of mineral	
Figure 2.10: Whiskbroom and pushbroom spectrometer [Vito et al., 2005]	
Figure 2.11: (a) Geometry of a push-broom hyperspectral imaging system. (b) On the	
Aircraft, the imaging spectrometer disperses light upon a two-dimensional	
array of detectors [Shaw and Burke, 2003]	0
Figure 3.1: General Flowchart of the Methodology used in this Thesis	6
Figure 3.2: Interleave Types	8
Figure 3.3: Examples of (a) non-eigenvector; (b) eigenvector and (c) standard eigenvector	r
3	8
Figure 3.4: The spectral angle mapper	0
Figure 3.5: Representation of Weighted Sum	1
Figure 3.6: Representation of Weighted Overlay	1
Figure 3.7: Relationship of fuzzy Gamma to other fuzzy operators	3
Figure 4.1: Steps of Fuse Lower Resolution with a Higher Resolution processes 5	6
Figure 4.2: Stacked and Gram_Sch images: bands 7,3,1 in RGB and their IQM before	e
atmospheric correction5	
Figure 4.3: Stacked and Gram_Sch images: bands 7,3,1 in RGB and their IQM after	r
atmospheric correction5	8
Figure 4.4: Pixel count and percent of 99% and 95% confidence after MF5	9
Figure 4. 5: False Color Composite ASTER bands 6,4,1 in RGB	0
Figure 4.6: Steps of Atmospheric Correction processes	1
Figure 4.7: False color composite ASTER bands (6.4.1) in RGB of El-Missikat granite	S
after applying the different atmospheric correction methods	
Figure 4.8: Kaolinite spectrum signature from (a) USGS and (b) ASTER spectral libraries	s.
6	
Figure 4.9: Result of applying MF technique using ASTER and USGS spectral libraries	
6	
Figure 4.10: Result of applying SAM technique using ASTER and USGS spectral libraries	
6	7

Figure 4.11: Steps of Minimum Noise Fraction processes.	68
Figure 4.12: False Color Composite ASTER bands 6,4,1 in RGB of El-Missikat,	El-Eridya
and Kab Amiri areas.	69
Figure 4.13: MNF bands and their eigenvalues of the area after stacking	g without
atmospheric correction	70
Figure 4.14: MNF bands and their eigenvalues of data after applying FLAASH att	mospheric
correction.	70
Figure 4.15: MNF bands and their eigenvalues of data after applying IARR att	mospheric
correction.	71
Figure 4.16: MNF bands of data after applying FLAASH atmospheric correction	n 71
Figure 4.17: MF with 95% confidence of data after applying FLAASH att	mospheric
correction.	74
Figure 4.18: False Color Composite ASTER bands 6,4,1 in RGB of El-Missikat,	El-Eridya
and Kab Amiri area.	76
Figure 4.19: Steps of localize radioactive zones processes.	77
Figure 4.20: MNF for the study area.	77
Figure 4.21: Best 3-band combination of ASTER data 3,7,8 in RGB	79
Figure 4.22: Best 3-band combination of band ratio data 5/3,8/1,9/4 in RGB	80
Figure 4.23: Best 3-band combination of PCA ASTER data 1,2,9 in RGB	81
Figure 4.24: ISODATA parameters which used in the model	82
Figure 4.25: The spectra of the studied minerals from the USGS library	83
Figure 4.26: the output classified images of:	84
Figure 4.27: The potential map correlation flowchart.	90
Figure 4.28: Potential maps output from different methods	92
Figure 4.29: "Discrimination of Fertile Granites" interface.	95

LIST OF TABLES

Table 2.1: Characteristics of the three ASTER Sensor Systems	21
Table 2.2: The impact of the radioactive elements in the measured spectra	25
Table 4.1: The ASTER scene characteristics of the studied areas	54
Table 4.2: Image quality measures between the original image and Gram_Sch imag	ge for
the 6 SWIR bands.	57
Table 4.3: MAE between the original image and the different atmospheric corre	
methods	64
Table 4.4: IQM between Stack image without correction and after deleting different I	MNF
eigenvalue and convert it back to the original space.	
Table 4.5: IQM between image after FLAASH correction and after deleting different l	
eigenvalue and convert it back to the original space.	
Table 4.6: IQM between image after IARR correction and after deleting different I	
eigenvalue and convert it back to the original space.	
Table 4.7: Pixel count and percent of 95% confidence after deleting different I	
eigenvalue applied on FlAASH correction.	
Table 4.8: Pixel count and percent of 95% confidence after deleting different 1	
eigenvalue applied on IARR correction	
Table 4.9: Highest values of OIF	
Table 4.10: Highest values of OIF.	
Table 4.11: Band Ratio used and their highest values of OIF.	
Table 4.12: the highest values of OIF for PCA.	
Table 4.13: The thematic layers' weights and their capacity values.	
The second in th	/ 1

CHAPTER 1

INTRODUCTION

An image is an easy and reliable medium for transfer of remote sensing information. It can convey position-related, size-related and other related information among different objects. In the context of our write-up here, images have been considered from a broader perspective, including those which a human eye cannot see.

Identifying materials by spectral measurements usually requires extensive field work, specialized skills and experience, sampling, chemical and mineralogical analysis. This is impractical when the goal is to identify materials or map materials over large areas. While airborne and spaceborne sensors have enabled to rapidly image large swaths of the earth, the large amount of data they produce makes it necessary to have algorithms that can process this data automatically. Therefore, our discussion focus on the analysis of remotely sensed images in its digital form representation (as numbers). Taking an example of brightness, simple mathematical tools (like addition, subtraction, multiplication, division) and up to some extent, even statistical tools, can be used to represent a new image of the same scene. But if the image is presented only as a photograph, no numerical manipulation can be done to it. Traditional methods of minerals exploration might be difficult to use due to highly earth complex topography, while the advantage of mapping by satellite imagery for its features application can be done by the imagery.

Remote sensing has been used in mineral exploration since the launch of the Landsat satellites (cooperative project between NASA and the U.S. Geological Survey) which have been orbiting the earth since 1972; and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is launched in 1999; which is a cooperative effort developed by NASA and Japan's Ministry of Economy, Trade and Industry (METI). Remote sensing data has mainly used for identification of alteration zones and lithological mapping.

This study employs the use of satellite imagery and Airborne data. The imagery was chosen based on the spectral and spatial parameters. Therefore, ASTER data were used in this study.

ASTER data was used for geological mapping since it provides widespread spectral range and high spatial resolution for visible infrared bands. The current study aims to put forward an understanding of how to use data from remote sensing, more specifically ASTER images for geological mapping of the fertile granites plutons at the Eastern Desert (ED) of Egypt.

The Earth's surface reflects the solar radiation to satellite sensors which modify it by its interaction with the atmosphere. The objective of applying an atmospheric correction is to define apparent true surface reflectance values and to retrieve physical parameters of the Earth's surface, including surface reflectance, by getting rid of solar illumination and