Effect of Post Allogenic Stem Cell Transplant Cyclophosphamide on Recovery of some Haematologic Parameters Compared with Other Regimens of GVHD Prophylaxis

Thesis

Submitted for partial fulfillment of the Master Degree in Hematology

By

Islam Mohamed Mostafa M.B., B.Ch

Under supervision of

Prof. Dr. Mohamed Osman Azzazi

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Prof. Dr. Hany Mohammed Abdulla Hegab

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Dr. Haitham Mohammed Mohammed

Lecturer of Internal Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

First and for most, thanks to Allah, the most merciful the most gracious for helping me to complete this work.

In all gratitude, I extend my most sincere thanks to Prof. Dr. Mohammed Osman Azzazi, Professor of Internal Medicine and Clinical Haematology, Faculty of Medicine Ain Shams University, for his help, guidance, and valuable advices were a great encouragement throughout the work.

Sincere appreciation to Dr. Hany Mohammed Hegab assistant professor of internal Medicine and clinical hematology, Faculty of Medicine, Ain Shams University and to Dr. Haitham Mohammed Abdelbary Lecturer of Internal medicine & Hematology, Faculty of Medicine, Ain Shams University, for their valuable encouragement and advice.

I would like to express my sincere gratitude to General major. Dr. Essam Ali Abdelmohsen, Head of department of haematology and BMT AT Maadi Armed Forces Medical Compound for his energetic help, expert guidance, valuable advices and continuous support.

I would also like to record my thanks and sincere gratitude to my family who supported and encouraged me throughout this work.

I would also like to convey thanks to my senior colleagues for their support and continuous encouragement.

Islam M. Mostafa

Tist of Contents

Title	Page No.
List of abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	6
Review of literature	
• Chapter 1: Hematopoietic Stem Cell Transpla	nntation 7
• Chapter 2: Bone Marrow Transplantation Con	mplications 36
• Chapter 3: Post-transplant Cyclophosphamid	e 52
Patients and Methods	66
Results	72
Discussion	85
Summary and Conclusion	94
Recommendation	96
Reference	97
Arabic summary	

Tist of Abbreviations

Abbr. Full term

aGvHD : Acute graft-versus-host disease

AIDS : Acquired immune-deficiency syndrome

AML : Acute myeloid leukemia
APC : Antigen-presenting cells
ATG : Anti-thymocyte globulin

BLPD : B-cell lymph proliferative disease

BM : Bone marrow BMI : Body mass index

BU : Busulphan

CAMs : Cell adhesion molecules
CCI : Charlson Comorbidity Index
CD : Cluster of Differentiation

cGVHD : Chronic graft-versus-host diseaseCLL : Chronic lymphocytic leukemiaCML : Chronic myelocytic leukemia

CMV : CytomegalovirusCRP : C-reactive proteinCSA : Cyclosporine A

CT : Computerized tomography
CTLs : Cytotoxic T lymphocytes
DMSO : Dimethyl sulfoxide

DMSO : Dimethyl sulfoxideEBV : Epstein–Barr virus

ECOG : Eastern Cooperative Oncology Group
FHCRC : Fred Hutchinson Cancer Research Center
G-CSF : Granulocyte colony-stimulating factor

GvHD : Graft-versus-host disease

HSCT : Hematopoietic cell transplantation

HSCT-CI : Hematopoietic cell transplantation-specific

comorbidity index

HL : Hodgkin lymphomaHLA : Human leucocyte antigenHSCs : Hematopoietic stem cells

HSCT : Hematopoietic stem cells Transplantation

Ig : Immunoglobulin

List of Abbreviations

IL : Interleukin

IPA : Invasive pulmonary aspergillosis
 KPS : Karnofsky Performance Score
 MDACC : MD Anderson Cancer Center

MDS : Myelodysplasia

MDS : Myelodysplastic syndrome

MM : Multiple myeloma

MSC : Mesenchymal stromal cells

MTX : Methotrexate

NHL : Non Hodgkin lymphoma

NK : Natural killer

NMA : Non-myeloablative NRM : Non-relapse mortality

OS : Overall survival

PBSC : Peripheral blood stem cells

PCP : Pneumocystis carinii pneumonia

PCR : Polymerase chain reaction PFTs : Pulmonary function tests

PTLD : Post-transplantationlymphoprofilerativedisorder

RBCs : Red blood cells

RCTs : Randomized controlled trials
RIC : Reduced-intensity conditioning
RSV : Respiratory syncitial virus
SDF1 : Stromal-derived factor 1

SF : Serum ferritin

TBI : Total body irradiation
TCD : T- cell depletion

TRM : Treatment-related mortality

UCB : Umbilical UCBUS : United States

VCAM-1: Vascular cell adhesion molecule-1

VOD : Veno-occlusive disease VZV : Varicella zoster virus

Tist of Tables

Table No.	Title	Page No.
Table (Ho.	Title	Page No.

Table (1):	Indications of hematopoietic stem cell transplantation	15
Table (2):	Comparison between group I and group II regarding age and sex of the studied cases	72
Table (3):	Different diagnosis between the two groups:	74
Table (4):	Comparison between both groups as regard Neutrophil Engraftment	76
Table (5):	Comparison between both groups as regard Platelet Recovery	78
Table (6):	Comparison between both groups as regard acute GVHD	79
Table (7):	Comparison between both groups as regard chronic GVHD	81
Table (8):	Comparison between both groups as regard CMV reactivation.	82
Table (9):	Comparison between both groups as regard relapse, mortality and non relapse mortality	83

List of Figures

Figure Ma	o. Title Page W	0.
Figure (1):	Some developmental steps in blood and marrow stem cell transplantation and the introduction of significant therapeutic agents, 1950–2000	1
Figure (2):	Cellular content of the stem cell transplant and fate of long- and short-lived cell lineages in the recipient	20
Figure (3):	Steps of stem cell engraftment	26
Figure (4):	Clinical manifestations of chronic GvHD	49
Figure (5):	Age group differences in both groups	73
Figure (6):	Sex differences in both groups	73
Figure (7):	Patient classification in both groups as regard diagnosis	75
Figure (8):	Engraftment results in both groups	77
Figure (9):	Day of engraftment of both groups	77
Figure (10):	Comparison between both groups as regard platlet recovery	78
Figure (11):	Comparison between both groups as regard acute GVHD	80
Figure (12) :	Comparison between both groups as regard acute GVHD grading	80
Figure (13):	Comparison between both groups as regard chronic GVHD	81
Figure (14):	Comparison between both groups as regard CMV reactivation	
Figure (15):	Comparison between both groups as regard relapse rate, mortality and non relapse mortality	

Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant hematological disorders (*Appelbaum et al.*, 2004).

Although HLA-identical siblings or HLA-matched unrelated donors (MUD) are considered the ideal sources of hematopoietic stem cells, many patients lack timely access to a suitable matched donor, especially in the context of highly aggressive disease. A promising alternative stem cell source is the HLA-haploidentical mismatched family donor who is readily available for nearly all patients (*Reisner et al.*, 2011).

Despite the fact that outcomes for patients receiving reduced intensity conditioning (RIC) allogeneic matched related or unrelated donor HSCT have continued to improve over time owing to improvements in transplantation techniques and supportive care, graft versus host disease (GvHD) remains a major source of post-transplantation morbidity and mortality. Although advances in immunosuppressive regimens have had some impact on the incidence and severity of acute GvHD, they have had little

impact on the incidence and severity of chronic GvHD (*Chao et al.*, 2000).

In fact, chronic GvHD has become one of the most common and clinically significant problems affecting long-term HSCT survivors, occurring in up to 70% of patients surviving more than 100 days post-transplantation. Management of chronic GvHD remains a major challenge, and has become a significant health problem in HSCT survivors with the increasing use of mobilized peripheral blood stem cells (*Flowers et al.*, 2002).

The combination of calcineurin inhibitors (CNIs), such as tacrolimus or cyclosporine, with methotrexate was developed more than 3 decades ago and remains the most common regimen used for GvHD prophylaxis. Although CNI-based immunosuppression has resulted in satisfactory rates of acute GVHD and survival outcomes, these regimens are not uniformly effective, and many patients are still dying from GvHD and related complications. Furthermore, these regimens are associated with considerable toxicity (*Edinger et al.*, 2003).

Nephrotoxicity is the most common and clinically significant adverse effect of cyclosporine. The renal effects

of cyclosporine can manifest as acute azotemia, tubular dysfunction, or as chronic progressive renal disease, that is irreversible (*Williams et al.*, 2005).

Neurologic side effects have been reported in patients being treated with cyclosporine with symptoms such as headaches and visual abnormalities, resembling hypertensive encephalopathy, Psychosis, seizures, anxiety and sleep disturbances have been documented but are rare. Other potential side effects of cyclosporine include gastrointestinal symptoms such as anorexia, nausea, vomiting, diarrhea and abdominal discomfort. Thomson Micromedex Healthcare Series. Subsequent strategies focusing on stringent ex vivo T cell depletion of the graft, often coupled with intensive preparative regimens, proved effective in preventing GvHD but at the expense of delayed immune reconstitution and high rate of non-relapse mortality (NRM). In this setting, cellbased strategies to increase post-transplantation immune recovery could efficiently decrease infectious mortality but are, at present, difficult to perform outside highly specialized centers (Handgretinger et al., 2012).

In recent years, several groups have devised successful approaches to perform T cell-replete transplantation, even in

the full haplotype-mismatched setting. Among other approaches, that has gained the most interest has been the use of high-dose post-transplantation cyclophosphamide (PTCy) as in vivo T cell allo-depleting agent (*Peccatori et al.*, 2015).

This approach has demonstrated promising results, including acceptable rates of NRM and severe GVHD in single- and multi-institution phase II trials and achieving outcomes equivalent to those of HSCT performed using HLA-identical donors or MUD (*Bashey et al.*, 2014).

Cyclophosphamide has been used in many combinations in **BMT** for its antitumor and immunosuppressive properties. Uses of high-dose cyclophosphamide in the post-transplantation setting has successfully modulated GvHD in preclinical models, as well as in a variety of clinical trials using HLA-matched and haplo-identical donors, mostly in the adult population (Kanakry et al., 2014).

High-dose post-transplantation cyclophosphamide (PTCy) targets all reactive donor T cells that are highly proliferative early after BMT, thus minimizing the risk of severe GvHD, while still enabling survival of resting

memory T cells that can offer protection against infection and aGVL effect (*Ganguly et al.*, 2014).

Promising clinical trial data using PTCy with or without additional immunosuppressive agents have been demonstrated in HLA-matched related, unrelated, and haploidentical transplantation settings (*McCurdy et al.*, 2015).

PTCy has been incorporated after myeloablative regimens, as well as after reduced-intensity regimens for both malignant and nonmalignant disorders Prior reports demonstrated the safety and feasibility of PTCy as single-agent GVHD prophylaxis after myeloablative HLA matched T cell replete BMT in adults, with rates of GvHD similar to that of HLA-matched BMT with conventional immunosuppression, including a calcineurin inhibitor (CNI) and methotrexate (*Peccatori et al.*, 2015)

AIM OF THE WORK

To assess the effects of using post-transplant cyclophosphamide as GvHD prophylaxis in allogeneic matched related stem cell transplant on recovery of blood counts compared with other regimens of GVHD prophylaxis

Chapter (1)

Hematopoietic Stem Cell Transplantation

More than 25,000 hematopoietic stem cell transplantations (HSCTs) are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and myeloproliferative syndromes. Before transplantation, patients receive intensive myeloablative chemoradiotherapy followed by stem cell "rescue." Autologous HSCT is performed using the patient's own hematopoietic stem cells, which are harvested before transplantation and reinfused after myeloablation. Allogeneic HSCT uses human leukocyte antigen (HLA)-matched stem cells derived from a donor. Survival after allogeneic transplantation depends on donor-recipient matching, the graft-versus-host response, and the development of a graft versus leukemia effect (Hatzimichael and Tuthill, 2010).

HSCT was started more than half a century ago as a standard therapeutic modality for a variety of malignant and non-malignant diseases, it has evolved from experimental