PREPARATION AND EVALUATION OF SOME HEALTHY FOODS FOR ELDERLY

By

MOHAMED AWAD ABD ALLAH ABD EL- KAWY

B.Sc.Agric.Sc.(Food Technology), AL-Azhar Univ.(2005) M.Sc.Agric.Sc.(Food Science and Technology), Ain Shams Univ.(2012)

> A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of

in
Agricultural Sciences
(Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

Approval Sheet

PREPARATION AND EVALUATION OF SOME HEALTHY FOODS FOR ELDERLY

By

MOHAMED AWAD ABD ALLAH ABD EL- KAWY

B.Sc.Agric.Sc.(Food Technology), AL-Azhar Univ.(2005) M.Sc.Agric.Sc.(Food Science and Technology), Ain Shams Univ.(2012)

This thesis for Ph.D. degree has been approved by:	
Dr. Shahinaz Ahmed Helmy	
Prof. of Food Science and Technology, Facu Agriculture, Cairo University	lty of
Dr. Ihab Salah Abd El-Hamid Ashoush	
Prof. of Food Science and Technology, Facu Agriculture, Ain Shams University	lty of
Dr. Magda Habib Allam	
Prof. Emeritus of Food Science and Technology, Fac Agriculture, Ain Shams University	culty of

Date of Examination: 20/8/2019

PREPARATION AND EVALUATION OF SOME HEALTHY FOODS FOR ELDERLY

By

MOHAMED AWAD ABD ALLAH ABD EL- KAWY

B.Sc.Agric.Sc.(Food Technology), AL-Azhar Univ.(2005)

M.Sc.Agric.Sc.(Food Science and Technology), Ain ShamsUniv.(2012)

Under the supervision of:

Dr. Magda Habib Allam

Prof. Emeritus of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Yasser Fikry Kishk

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. Anaam Kamal Ahmed

Research Prof. Emeritus of Biochemistry, Department of Food Quality Assurance, National Organization for Drug Control and Research

ABSTRACT

Mohamed Awad Abd Allah Abd El- Alkawy: Preparation and Evaluation of Some Healthy Foods for Elderly. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2019.

Osteoporosis is a major health problem in postmenopausal women due to a sharp decrease in estrogen concentration that leads to an increased rate of bone remodeling; which is associated with both decreased bone mineral density and increased risk of fracture. Therefore, this study was necessary designed to developed natural substance acts as alternative to traditional hormone replacement therapy with less undesirable side effects such as phytoestrogens compounds the same as isoflavone and lignans. To put this aim into effect, defatted soy bean (DSB) and defatted flaxseed (DFS) as phytoestrogen sources of isoflavone and lignans, respectively; broccoli (BR) and red cabbage (RC) as sources of antioxidant agents; skimmed milk powder (SMP) as natural sources of calcium, besides of vitamin D were used in this work.

Biological evaluation was carried out on ninety six aged female albino investigate whither supplementation aforementioned sources will improve bone health in experimental animals. Consequence of that, eight rats were taken as an initial group, other eight rats were hold as a normal negative control group and fed on a basal diet. The remaining eighty rats were ovariectomized and fed on low calcium diet for 8 weeks to produce osteoporotic rats model, 8 rats were chosen as an onset of experimental group. Also, 8 rats were kept as a positive control group and fed on a standard diet. The reminder of osteoporotic rats were divided into 8 groups, (each of 8 rats) and fed on standard diet supplemented with: DSB (GI), DSB with BR (GII), DSB with RC (GIII), DSB with mixture of BR and RC (GIV), DFS (GV), DFS with BR (GVI), DFS with RC (GVII), DFS with mixture of BR and RC (GVIII). Skimmed milk powder and vitamin D were added to each tested group diet, the feeding period was 60 days.

At the onset and the end of experiment, rats were weighed, blood sample were taken and serum were separated and exposed to their biochemical analysis included minerals content such as total and ionized calcium, magnesium and phosphorus, liver and kidney functions, antioxidant capacity, reduced glutathione, malondialdehyde, estradiol and parathyroid hormones, and alkaline phosphatase activity. Rats were sacrificed and organs were excited and weighed, femur and tibia bones were separated and subjected to their physical and chemical properties.

Osteoporotic rats model rats showed decreases in body weight, an increases in relative weights of kidney and liver and their functions, and decreases in physical and chemical properties of femur and tibia bones, also decreases in serum and bone minerals, estradiol, alkaline phosphatase activity, oxidative stress parameters and an increase in parathyroid hormone as a bone marker were also found.

Feeding osteoporotic rats on the supplemented diets led to improvement in the aforementioned parameters with different values, the best results and the highest recovery in all biochemical analysis of rats serum, in addition to femur and tibia bones physical and chemical parameters were found in group IV followed by group VIII compared to positive and negative control groups, these osteoporotic rat groups which fed on either DSB or DFS with a mixture of BR and RC in addition to SMP and vitamin D. However, group II comes in the third place which fed on DSB with BR.

It could be concluded that the three aforementioned mixtures of diets, may be a promising sources to produce a functional food for prevention and treatment of bone loss and cell damage, therefore supplemented soups were prepared using these recommended mixtures and submitted to sensory evaluation.

Key Words: Bones; Osteoporosis; Defatted soy bean; Defatted flaxseed; Red cabbage; Broccoli; Skimmed milk.

ACKNOWLEDGEMENT

Ultimate thanks are due to **Allah** who without his aid this work could not be done.

Sincere gratitude to **Prof. Dr. Magda H. Allam**; Prof. Emeritus of Food Science and Technology, Food Science Department, Faculty of Agriculture, Ain Shams University, for her kind help, contractive criticism, valuble comments and continuous supervision of this investigation.

Gratefulness and thankfulness are extended to **Prof. Dr. Yasser F.M. Kishk**; Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University, for his continuous supervision and every possible help he kindly offered through this study.

I wish also to express my gratitude to **Prof. Dr. Anaam K. Ahmed;** Prof. Emeritus of Biochemistry, Department of Food Quality Assurance, National Organization for Drug control and Research, for her continuous supervision valuable help, plentiful advice, providing the necessary laboratory facilities of biological experiment in this work.

My sincere thanks are extended to the staff members of Food Quality Assurance, National Organization for Drug Control and Research (NODCAR), for their fruitful cooperation and friendships.

Finally, my sincere gratitude and deepest appreciation to my family for their persistent encouragement, support and sympathy.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	IX
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	6
2.1. Osteoporosis disease in elderly	6
2.2. Dietary needs for bone health and prevention for osteoporosis	10
2.2.1. Protein and phytoestrogen sources	10
2.2.1.1. Soy bean	13
2.2.1.2. Flaxseed	17
2.2.2. Skimmed milk powder	21
2.2.3. Dietary antioxidant	26
2.2.3.1. Cruciferous vegetables	29
2.2.3.1.1. Broccoli	29
2.2.3.1.2. Red cabbage	32
2.2.4.Vitamin D	35
3. MATERIALS AND METHODS	39
3.1. Materials	39
3.2. Methods	39
3.2.1. Preparation of used plant materials	39
3.2.1.1.Preparation of defatted flaxseed flour	39
3.2.1.2. Preparation of broccoli and red cabbage powder	40
3.2.2. Analytical methods	40
3.2.3. Determination of minerals	40
03.2.4. Determination of vitamins	40
3.2.5. Determination of antioxidants in the studied materials	41
3.2.5.1. Determination of antioxidants content	41
3.2.5.2. Determination of antioxidants activity	42
3.3. Biological evaluation	43

	Page
3.3.1. Induction of experimental model of osteoporosis animals	43
3.3.2. Feeding experiment	44
3.4. Serum biochemical analysis	47
3.4.1. Serum minerals parameters	47
3.4.2. Liver function parameters	48
3.4.3. Kidney function parameters	48
3.4.4. Oxidative stress parameters	49
3.4.5. Serum hormones parameters	49
3.4.6. Alkaline phosphatase activity parameter	50
3.5. Bones analyses	50
3.5.1. Physical properties of bone	50
3.5.2. Bones minerals concentration	51
3.6. Preparation of Soup samples	51
3.7. Sensory evaluation of Soup	51
3.8. Statistical analysis	52
4. RESULTS AND DISCUSSION	53
4.1. Proximate analysis of the studied materials	53
4.2. Antioxidant in the studied materials	57
4.2.1. Antioxidant contents	57
4.2.2. Antioxidants activity	59
4.3. Biological evaluation	66
4.3.1. Changes in biological parameters	66
4.3.1.1. Changes in body and relative organs weights	66
4.3.1.2. Changes in serum biochemical analysis	68
4.3.1.3. Changes in bone parameters	70
4.3.2. Feeding supplemented tasted diet on osteoporotic rats	73
4.3.2.1. Effect on body and relative organs weight	73
4.3.2.2. Effects on serum parameters	78
4.3.2.2.1. Effects on serum minerals	78
4.3.2.2. Effect on liver function	85
4.3.2.2.3. Effect on kidney function	90

	Page
4.3.2.2.4. Effect on oxidative stress	97
4.3.2.2.5. Effect on serum hormones	103
4.3.2.2.6. Effect on alkaline phosphates activity	108
4.3.2.3. Effect on bones parameters	110
4.3.2.3.1. Physical properties of bones	110
4.3.2.3.2. Chemical composition of bones	116
4.3.2.3.3. Minerals in bones	120
4.3.2.3.4. Vitamin D in bones	124
4.4. Sensory evaluation of soup products	126
5. SUMMARY	128
6. REFERENCES	135
7. ARABIC SUMMARY	

LIST OF TABLES

Гable No.		Page
1	Composition of the salts and vitamins per 1kg	45
2	mixture Composition of applemented dista (0/)	16
2	Composition of supplemented diets (%)	46
3	Ingredients (%) of dried materials used in soup preparation	52
4	Proximate analysis of the studied materials	54
5	Mineral and vitamin contents in the studied materials $(g/100g)$	56
6	Total phenols (mg GAE /100 g DM) in different solvent extracts of defatted soy bean, defatted flaxseed, broccoli and red cabbage	58
7	Total flavonoids (mg QE /100 g DM) in different solvent extracts of defatted soy bean, defatted flaxseed, broccoli and red cabbage	60
8	Radical scavenging activity (%) of different solvent extracts of defatted soy bean, defatted flaxseed, broccoli and red cabbage	61
9	Reducing power (OD at 700 nm) of different solvent extracts of defatted soy bean, defatted flaxseed, broccoli and red cabbage	63
10	Ferric reducing antioxidant power (OD at 593) of different solvent extracts of defatted soy bean, defatted flaxseed, broccoli and red cabbage	64
11	Changes in body weight (g) and relative organs weight (g/100 g body weight) of OVX female albino rats fed on law calcium diet for 8 weeks	67
12	Changes in biochemical parameters in serum of OVX female albino rats fed on law calcium diet for 8 weeks	69

Table No.		Page
	Changes in liver and kidney functions in serum of	
13	OVX female albino rats fed on law calcium diet for	71
	8 weeks	
	Changes in physical and chemical parameters in	
14	femur and tibia bones of OVX female albino rats	72
	fed on law calcium diet for 8 weeks	
	Average body weight (g) of osteoporotic female	7.5
15	albino rats fed on different supplemented diets for	75
	60 days	
	Mean values of internal relative organs	
16	weight/body weight of osteoporotic female albino	77
	rats fed on different supplemented diets for 60 days	
	Serum total calcium (mg/dL) of osteoporotic female	
17	albino rats fed on different supplemented diets for	79
	60 days	
	Serum ionized calcium (mg/dL) of osteoporotic	
18	female albino rats fed on different supplemented	80
	diets for 60 days	
	Serum magnesium (mg/dL) of osteoporotic female	
19	albino rats fed on different supplemented diets for	82
	60 days	
	Serum Phosphorus (mg/dL) of osteoporotic female	
20	albino rats fed on different supplemented diets for	83
	60 days	
	Serum alanin aminotransferase (ALT) (µl/dL) of	
21	osteoporotic female albino rats fed on different	87
	supplemented diets for 60 days	
	Serum aspartate aminotransferase (AST) (µl/dL) of	
22	osteoporotic female albino rats fed on different diets	88
	for 60 days	

Table No.		Page
23	Serum total protein (g/dL) of osteoporotic female albino rats fed on different supplemented diets for 60 days	91
24	Serum albumin (g/dL) of osteoporotic female albino rats fed on different supplemented diets for 60 days	92
25	Serum globulin (g/dL)of osteoporotic female albino rats fed on different supplemented diets for 60 days	93
26	Serum urea/nitrogen (mg/dL) of osteoporotic female albino rats fed on different supplemented diets for 60 days	94
27	Serum creatinine (mg/dL) of osteoporotic female albino rats fed on different supplemented diets for 60 days	96
28	Serum total antioxidant capacity (mm/L) of osteoporotic female albino rats fed on different supplemented diets for 60 day	99
29	Serum reducing glutathione (mg/dL) of osteoporotic female albino rats fed on different supplemented diets for 60 days	100
30	Serum malondialdehyde (nmol/dL) of osteoporotic female albino rats fed on different supplemented diets for 60 days.	101
31	Serum estradiol hormone (pg/ml) of osteoporotic female albino rats fed on different supplemented diets for 60 days	105
32	Serum parathyroid hormone (pg/ml) of osteoporotic female albino rats fed on different supplemented diets for 60 days	106
33	Serum alkaline phosphatase (IU/L) of osteoporotic female albino rats fed different supplemented diets	109

Table No.		Page
	for 60 days	
34	Physical properties of femur bone osteoporotic female albino rats fed on different supplemented diets for 60 days	111
35	Physical properties of tibia bone of osteoporotic female albino rats fed on different supplemented diets for 60 days	114
36	Chemical composition (%) of femur bone of osteoporotic female albino rats fed on different supplemented diets for 60 days	117
37	Chemical composition (%) of tibia bone of osteoporotic female albino rats fed on different supplemented diets for 60 days	118
38	Minerals of femur bones (mg/g) of osteoporotic female albino rats fed on different supplemented diets for 60 days	121
39	Minerals of tibia bones (mg/g) of osteoporotic female albino rats fed on different supplemented diets for 60 days	122
40	Vitamin D ($\mu g/mg$) of femur and tibia bones of osteoporotic female albino rats fed on different supplemented diets for 60 days	125
41	Mean score values of sensory evaluation of different prepared soup	127

VIII

LIST OF FIGURES

Figure		Page
1	Photography of femur bone of osteoporotic female albino rats fed on different supplemented diets for 60	112
2	days. Photography of tibia bone of osteoporotic female albino rats fed on different supplemented diets for 60 days.	115

LIST OF ABBREVIATION

ALA α-linolenic acid

ALP Alkaline phosphatase

ALT Alanine aminotransferase

ARA Antiradical activity

AST Aspartate aminotransferase

BD Bone density

BMD Bone mineral density

BR Broccoli

BRAA Branched chain amino acids

Cm Centimeter

CO-Q10 Coenzyme Q10

DEXA Dual energy x-ray absorptiometry

DFS Defatted flaxseed

dL deciliter
DM Dry matter

DPPH 2,2-Diphenyl-2-picryl-hydrazyl

DSB Defatted soy bean

E₂ Estradiol

EAA Essential amino acids ERs Estrogen receptors

 $ER\alpha$ Estrogen receptor alpha $ER\beta$ Estrogen receptor beta

FDA Food and Drug Administration FRAP Ferric reducing antioxidant power

FS Flaxseed G Gram

g/dL gram/ deciliter

GAE Gallic acid equivalent
GPX Glutathione peroxidase
GSH Reduced glutathione

HPLC High performance liquid chromatography

HRP Horseraddish peroxidase