

Study of the Prevalence and Pattern of Fungal Pneumonias in Respiratory ICUs

Thesis

Submitted for Partial Fulfillment of Master Degree in **Chest Diseases**

By

Waleed Mohamed Abd-Elsattar Mohamed

M.B.B.C.h, Menoufia University (2012)

Under Supervision of

Prof. Dr/ Mona Mansour Ahmed

Professor of Chest Diseases Faculty of Medicine, Ain Shams University

Prof. Dr/ Ayman Abd-Elhamid Farghaly

Consultant of Chest Diseases Military Medical Academy

Dr/ Riham Hazem Raafat

Lecturer of Chest Diseases Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr/ Mona Mansour Ahmed**, Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr/ Ayman Abd- Elhamid Farghaly**, Consultant of Chest Diseases,
Military Medical Academy, for his sincere efforts, fruitful
encouragement.

I am deeply thankful to **Dr/ Riham Hazem**Raafat, Lecturer of Chest Diseases, Faculty of Medicine,
Ain Shams University, for her great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Waleed Mohamed Abd-Elsattar Mohamed

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	8
Introduction	1 -
Aim of the Work	13
Review of Literature	
Fungal Pneumonia	14
Diagnosis of Pulmonary Fungal Infection	45
• Fungal Infection and Respiratory Diseases	61
■ Treatment of Pulmonary Fungal Infection	69
Patients and Methods	73
Results	81
Discussion	94
Summary	106
Conclusion	109
Recommendations	110
References	111
Arabic Summary	

List of Tables

Table No.	Title	Page No.
	Tables of Review	
Table (I):	Fungal Classification and nomenclat	cure17
Table (II):	Aggressive human fungal pathogens	:19
Table (III):	Aspergillus-associated respiratory di	sorders25
Table (IV):	Risk factors for invasive fungal infethe critically ill patients	
Table (V):	European Organization of the Rese Treatment of Cancer/Mycoses Stud criteria for diagnosis of invasive infection (IFI)	ly Group e fungal
Table (VI):	Tests used for the direct and diagnosis of pulmonary mycoses	
Table (VII):	Reagents and stains for the mycological examination of different samples.	t clinical
Table (VIII)	Culture media recommended for isolation according to clinical specifungal growth period	men and
Table (IX):	Some characteristics of tissue reafungal infections	
Table (X):	Available Beta-D-Glucan Assays	57
	Tables of Results	
Table (1):	Demography of patients;	81
Table (2):	Risk factors of the studied patients;.	83
Table (3):	Underling pulmonary disease in patients;	
Table (4):	Clinical presentation of patients;	85

Tist of Tables cont...

Table No.	Title	Page No.
Table (5):	Radiological presentation of patients	s;86
Table (6):	Specimen methods and final diagnos	sis;87
Table (7):	Demographic characters in correlationgal infection;	
Table (8):	Co-morbidity impact in patients wi	•
Table (9):	Impact of medication used with infection;	•
Table (10):	Length of stay in ICU and MV correlation with fungus infection;	
Table (11):	Effect of underling chest disease of infection;	•
Table (12):	Radiological aspect of fungal infection	on;93

List of Figures

Fig. No.	Title	Page No.	
	Figures of Review		
Figure (A):	Swivel connector.	77	
Figure (B):	Flow chart of direct examinat		
Figures of Results			
Figure (1):	Age distribution in the studied patie	ents82	
Figure (2):	Sex distribution in the studied patie	ents82	
Figure (3):	DM in studied groups	89	
Figure (4):	Steroid use in studied patients	90	
Figure (5):	MV in the studied patients	91	

Tist of Abbreviations

Abb.	Full term
ARPA	Allergic bronchopulmonary aspergillosis
	Acquired immunodeficiency syndrome
	Bronchoalveolar lavage
<i>BMI</i>	_
<i>BP</i>	·
	British thoracic society
	Complete Blood Count
CF	-
	Cell mediated immunity
COPD	Chronic obstructive pulmonary disease
CT	Computed tomography
DM	Diabetes mellitus
ECG	Electrocardiogram
ELISA	Enzyme-linked immunosorbent assay
Нь	Hemoglobin
HBV	Hepatitis B virus
HIV	Human immunodeficiency virus
HRCT	High resolution computed tomography
HSCT	Hematopoietic stem cell transplantation
<i>IA</i>	Invasive aspergillosis
ICU	Intensive care units
<i>IFI</i>	Invasive fungal infections
<i>IgE</i>	Immunoglobulin E
<i>IgG</i>	Immunoglobulin G

Tist of Abbreviations cont...

Abb.	Full term	
<i>ILD</i>	Interstitial lung disease	
<i>IPA</i>	Invasive Pulmonary Aspergillosis	
LOS	Length of stay	
<i>LPCB</i>	Lacto-Phenol Cotton Blue	
MV	Mechanical Ventilation	
<i>PCP</i>	Pneumocystis carinii pneumonia	
PCR	Polymerase chain reaction	
PEF	Peak expiratory flow	
PET	Positron emission tomography	
RICU	Respiratory Intensive care unit	
<i>RML</i>		
SGA	Sabaroud glucose agar	
<i>TB</i>	Tuberculosis	

INTRODUCTION

Infections have almost become an inseparable part of the Lintensive care units throughout the globe in spite of advancements in diagnostic and therapeutic numerous interventions. The presence of infection in critically ill patients poses unique challenges as it can directly influence the morbidity and mortality. Of the various infections prevalent in an intensive care unit, invasive fungal infection has always been considered to occur infrequently, but, over the past few years, with the surge in broad-spectrum antibiotic usage and improved knowledge of fungal diseases, the incidence has risen (Bajwa et al., 2013).

Pneumonia is the leading infectious cause of death in developed countries (Restrepo et al., 2013). Among the vast diversity of respiratory pathogens, fungi account for only a small portion of community-acquired and nosocomial pneumonias. However, fungal respiratory infections generate concern in the expanding population of immunosuppressed patients (Lamoth et al., 2014).

Fungal pneumonia is an infectious process in the lungs caused by one or more endemic or opportunistic fungi. Fungal infection occurs following the inhalation of spores, after the inhalation of conidia, or by the reactivation of a latent infection. Hematogenous dissemination frequently occurs, especially in an immunocompromised host (Guarner et al., 2011).

Endemic fungal pathogens (eg, Histoplasma capsulatum, Coccidioides immitis. **Blastomyces** dermatitidis, *Paracoccidioides* brasiliensis. *Sporothrix* schenckii. Cryptococcus neoformans) cause infection in healthy hosts and in immunocompromised persons (Ellen Jo Baron et al., 2013).

Opportunistic fungal organisms (eg. Candida species, Aspergillus species, Mucor species) tend to cause pneumonia in patients with congenital or acquired defects in the host immune defenses (Ellen Jo Baron et al., 2013).

Among yeasts and molds, Candida and Aspergillus species are the most frequent nosocomial fungal pathogens including in the critical care setting (*Dimopoulos et al.*, 2012).

Risk factors of the development of invasive fungal infections in ICUs patients have been analyzed in numerous retrospective studies with a heterogeneous patient population. Various conditions including patient's age, prolonged length of stay, administration of broad-spectrum antibiotics, central vascular catheters, diabetes mellitus, parenteral nutrition, mechanical ventilation, renal insufficiency, hemodialysis, colonization, antifungal prophylaxis, surgery, pancreatitis, and treatment with corticosteroids and chemotherapy were the most frequently identified risk factors. Prior to surgery, Candida colonization, acute renal failure., hemofiltration, use of parenteral nutrition, presence of triple lumen catheter, and ICU

length of stay were factors also identified in prospective studies (Delaloye and Calandra, 2013).

The diagnosis of fungal pneumonias is difficult to prove and is often made on a presumptive basis. It relies on a combination of clinical, radiologic, and microbiological factors (Limper et al., 2010).

The individual prognosis is often linked to the severity and outcome of the underlying disease and to whether a reversal of factors affecting the patient's immune status is possible (Bateman et al., 2016).

AIM OF THE WORK

n this study we will put a hand on the prevalence of fungal pneumonias in a group of respiratory ICUs and their pattern.

Chapter (1)

FUNGAL PNEUMONIA

An overview

Definition:

ungal pneumonia is an infection of the lungs by fungi. It can be caused by either endemic or opportunistic fungi or a combination of both.

Fungi are one of the five kingdoms of life. A fungus is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. Many fungi are good and useful (edible mushrooms would be an example of these) while some cause problems (some fungi can injure plants and people) (*Baron et al., 1996*). Of the approximately 100,000 recognized species of fungi, about 300 are known to cause human infections. Fungal diseases of healthy humans tend to be relatively benign, but the few life-threatening fungal diseases are extremely important (*Vartivarian et al., 1993*).

Morphology of fungi:

Yeasts are single-celled forms that reproduce by budding, whereas molds form multicellular hyphae (*Baron et al.*, 1996).

Yeasts:

Yeast taxa are distinguished on the basis of the presence or absence of capsules, the size and shape of the yeast cells, the mechanism of daughter cell formation (conidiogenesis), and the presence of sexual spores (*Matsumoto et al.*, 1994).

Yeasts include the *Candida* spp., *Cryptococcus* spp., and *Pneumocystis jiroveci*. *Candida* species grow by forming pseudohyphae. The pathogenic species of *Candida* include *C.albicans*, *C.krusei*, *C.parapsilosis*, *C.tropicalis*, *C.lusitaniae*, *C.glabrata*, *C.guilliermondii*, *C.pseudotropicalis*, and *C.dubliniensis* (*Bellmann et al.*, 2008).

Molds:

Molds are characterized by the development of hyphae which result in the colony characteristics seen in the laboratory.

Molds include *Aspergillus* spp. and the agents of mucormycosis. *Aspergillus* fumigatus is the most pathogenic of the molds and the most common of that species to cause invasive disease. Other species of *Aspergillus* include *A. flavus*, *A. terreus*, and *A. niger* (*Richardson et al.*, 2008).

Structure of fungi

Fungi are eukaryotes. They possess a nucleus enclosed by a nuclear membrane, a rigid cell wall, endoplasmic reticulum, and mitochondria like plant and animal cells (*Baron*