

Study of Correlation between Noninvasive Measurement of Carboxyhemoglobin and Bilirubin Level Measurement in Near- Term and Term Neonates as a Predictor of Neonatal Hemolysis

Thesis

Submitted For Partial Fulfillment of Master Degree in **Pediatrics**

By

Marina Adel Fouad Elias

M.B.B.Ch, 2014

Under Supervision of

Prof. Dr. Hisham Abd El-Samie Awad

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Dr. Basma Mohamed Shehata

Lecturer of Pediatrics
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to **God** the Most Beneficent and Merciful.

Really I can hardly find the words to express my gratitude to **Prof. Dr. Hisham Abd El-Samie Awad** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Basma Mohamed Shehata** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her continuous directions and support throughout the whole work. I really appreciate their patience and support.

In addition, i would like to express my gratitude to (Massimo Corp) for providing the device for this work.

I wish to express a sincere thank you to the infants and their parent who so graciously agreed to participate in my study. Special thanks to NICU staff members, whose support was most appreciated.

Last but not least, I dedicate this work to my family, without their sincere emotional support this work would not have ever been completed.

Tist of Contents

Title	Page No.
Abstract	
List of Abbreviations	5
List of Tables	7
List of Figures	9
Introduction	1 -
Aim of the Work	14
Review of Literature	
Neonatal Jaundice	15
Carboxyhemoglobin	50
Patients and Methods	
Results	65
Discussion	97
Limitation of the Study	109
Summary	
Conclusion	
Recommendations	113
References	
Arabic Summary	

Abstract

Background: Neonatal hyperbilirubinemia is common in the neonatal period. Yet, serious pathological hyperbilirubinemia may cause kernicterus with detrimental neurologic sequalae. Carbon monoxide is the byproduct of the breakdown of heme, it is transported as carboxyhemoglobin to the lungs to be exhaled. Thus, carboxyhemoglobin levels increase as a result of hemolysis, and is therefore considered a sensitive index for the degree and severity of the subsequent hyperbilirubinemia.

Objectives: To correlate between non-invasive carboxyhemoglobin levels and bilirubin levels in near-term and term neonates starting hour 1 of life.

Subjects and methods: A total of 100 near-term and term neonates were studied, by measuring carboxyhemoglobin by a Pulse Co-oximetry and serum bilirubin level (hour1) as well as transcutaneous bilirubin (TcB) hourly since birth for the 1st 6 hours then every 6 hours till the time of discharge in a cross sectional case-control study.

Results: A cut off value of 4 for non-invasive carboxyhemoglobin with sensitivity of 81.25%, specificity of 95.24% was found to the earliest non-invasive predictor for subsequent jaundice. In patients with proven hemolysis, carboxyhemoglobin when compared to TcB was found to increase significantly in the first 3 hours of life more than TcB, starting hour 4 till time of discharge it was increased yet statistically insignificant

Conclusion: We found that non-invasive carboxyhemoglobin is an effective early predictor for subsequent jaundice starting first hour of life. It can be used as a screening tool for hemolytic jaundice especially in hospitals with early discharge policy.

Key words: Neonatal jaundice, Carboxyhemoglobin, Hemolysis, Pulse co-oximetry.

Tist of Abbreviations

Abb.	Full term
ABE	Acute Bilirubin Encephalopathy
<i>ABR</i>	Auditory Brainstem Response
<i>ANOVA</i>	Analysis of Variance
<i>ATP</i>	Adenosine Triphosphate
<i>AUC</i>	Area under the Curve
<i>BIND</i>	Bilirubin Induced Neurological
0.D	Dysfunction
	Conjugated Bilirubin
	Complete Blood Count
<i>CFL</i>	Conventional Fluorescent Light
<i>CMV</i>	Cytomegalovirus
<i>CNS</i>	Central Nervous System
<i>CO</i>	Carbon Monoxide
СОНь	Carboxy hemoglobin
<i>CRP</i>	C-reactive Protein
<i>DCT</i>	Direct Coomb's Test
<i>ET</i>	Exchange Transfusion
<i>ETCO</i>	End Tidal Carbon Monoxide
<i>FDA</i>	Food and Drug Administration
<i>FFA</i>	Free Fatty Acids
<i>G6PD</i>	Glucose 6 - Phosphate Dehydrogenase
<i>GGT</i>	Gamma Glutamyl Transpeptidase
<i>GI</i>	Gastro-Intestinal
<i>GST</i>	Glutathione S – $Transferase$
H	Hours
<i>HDFN</i>	Hemolytic Disease of Fetus and Neonate
НО	Heme Oxygenase
<i>IgG</i>	$Immunoglobulin\ G$
<i>IQR</i>	Interquartile Range

Tist of Abbreviations cont...

Abb.	Full term
IVIG	Intravenous Immunoglobulins
	Lactate Dehydrogenase
	Light Emitting Diode
	Magnetic Resonance Cholangio-
MADDII	Pancreatography
NADPH	Nicotinamide Adenine Dinucleotide Phosphate Hydrogenase
<i>NEC</i>	Necrotizing Enterocolitis
<i>NICU</i>	Neonatal Intensive Care Unit
OFC	Occipito – Frontal Circumference
PCV	Packed Cell Volume
RBCs	Red Blood Cells
Retics	Reticulocytic count
	Rhesus Hemolytic Disease of the Newborn
ROC	Receiver Operating Characteristic
SD	Standard Deviation
SPSS	Statistical Program for Social Science
<i>TcB</i>	Transcutaneous Bilirubin
<i>TLC</i>	Total Leucocytic Count
<i>TORCH</i>	Toxoplasma, Rubella, Cytomegalovirus,
	Herpes Simplex
<i>TSB</i>	Total Serum Bilirubin
<i>UCB</i>	Unconjugated Bilirubin
<i>UDP</i>	$ Uridine\ Diphosphate$
<i>UDPGA</i>	$ Uridine\ Diphosphate\ Glucuronic\ Acid$
<i>UDPGT</i>	Uridine Diphosphate Glucuronyl Transferase

Tist of Tables

Table No.	Title	Page No.	
	Tables of Review		
Table I:	Risk Factors for Hyperbilirubin Newborns		
Table II:	Classification of Hyperbilirubinemia according underlying cause		
Table III:	Mechanism of Presenting Sig Symptoms based on Disease Process		
Table IV:	Ten Recommendations for Prevent Management of Hyperbilirubinemia		
Tables of Results			
Table 1:	Clinical features of the studied neon	ates 65	
Table 2:	Laboratory results of the studied within 1st hour of life		
Table 3:	Correlation of COHb and TcB at times of measurement for all neonat		
Table 4:	Clinical data and significant histor the 2 groups according to reticulocyt		
Table 5:	Initial neonatal lab results in both according to reticulocytic count	-	
Table 6:	COHb levels in the 2 groups in hourly till hour 6 of life then every thereafter according to reticulocytic	6 hours	
Table 7:	TcB levels in the 2 groups measure till hour 6 of life then every thereafter according to reticulocytic	6 hours	

Tist of Tables cont...

Table No.	Title	Page	No.
Table 8:	COHb levels in the 2 groups mean hourly till hour 6 of life then every 6 thereafter according to LDH level	hours	77
Table 9:	TcB levels in the 2 groups measured till hour 6 of life then every 6 thereafter according to LDH level	hours	79
Table 10:	COHb levels in the 2 groups mean hourly till hour 6 of life then every 6 thereafter according to blood compatibility	hours group	81
Table 11:	TcB levels in the 2 groups measured till hour 6 of life then every 6 thereafter according to blood compatibility	hours group	83
Table 12:	Comparison between carboxyhemoglobin level in the 2 according to need of treatment for jaur	groups	85
Table 13:	Comparison between timely TcB level 2 groups according to need of treatme jaundice	ent for	87
Table 14:	Comparison between COHb & TcB let the neonates who received treatme jaundice	nt for	89
Table 15:	Comparison between COHb & TcB derrate in neonates who developed patho jaundice	logical	95

List of Figures

Fig. No.	Title	Page No.
Figure I:	Figures of Review Bilirubin Production and Metabolism	n17
Figure II:	A rough guide for level of dermal s with level of bilirubin	_
Figure III:	BIND score for ABE	34
Figure IV:	Approach to neonatal jaundice	36
Figure V:	Serum Bilirubin Normogram	38
Figure VI:	Transcutaneous Bilirubin Normogra	m38
Figure VII:	Bilirubin levels according to gestation for preterms	_
Figure VIII:	Guidelines for phototherapy in infan or more weeks' gestation	
Figure IX:	Guidelines for phototherapy in infan or more weeks' gestation accord bilirubin measured by bilicheck	ling to
Figure X:	Guidelines for exchange transfus infants of 35 or more weeks' gestation	
Figure XI:	HO-catalized heme metabolism path	way 52
Figure XII:	Dräger Jaundice Meter (JM 105)	60
Figure XIII:	Guidelines for phototherapy in infan or more weeks' gestation accord bilirubin measured by bilicheck	ling to
Figure XIV:	'Massimo Rad-57 Pulse CO-ox device	v

Tist of Figures cont...

Fig. No.	Title	Page No.
Figures of Results		
Figure 1:	Pie chart showing neonates with su ABO/Rh incompatibility among the infants.	studied
Figure 2:	ABO/Rh incompatibility among the 2 according to reticulocytic count	-
Figure 3:	Total leucocytic count and Hemlevel among the 2 groups accordent reticulocytic count	ling to
Figure 4:	A box and whisker plot of total bilirubin among the 2 groups accorreticulocytic count	ding to
Figure 5:	Course of COHb in the 2 group elevated reticulocytic count and reticulocytic count	normal
Figure 6:	Course of TcB levels compared i	
Figure 7:	Course of COHb levels in both according to LDH level	-
Figure 8:	Course of TcB in both groups of hi normal LDH levels	
Figure 9:	Course of COHb in both groups accorblood group compatibility	•
Figure 10:	Course of TcB in both groups wi without suspected ABO & incompatibility	Rh

Tist of Figures cont...

Fig. No.	Title	Page	No.
Figure 11:	Course of COHb compared in groups elevated reticulocytic count, high levels and suspected ABO & incompatibility	LDH Rh	84
Figure 12:	Course of COHb level in the 2 g according to need for treatment	_	86
Figure 13:	Course of TcB in the 2 groups accord need for treatment	_	88
Figure 14:	Course of COHb and TcB in neonate developed pathological jaundice		89
Figure 15:	Receiver operating characteristic (ROC) for carboxyhemoglobin at 1st h prediction of cases with jaundice	our in	91
Figure 16:	Receiver operating characteristic (ROC) for carboxyhemoglobin at 3rd h prediction of cases with jaundice	our in	92
Figure 17:	Receiver operating characteristic (ROC) for carboxyhemoglobin at 6th h prediction of cases with jaundice	our in	93
Figure 18:	Detection rate of COHb and Toneonates who developed patholiaundice at different times of measures	logical	96
Figure 19:	ROC curve of COHb in <i>Karabulut</i> (2019) study		106
Figure 20:	ROC curve of COHb in <i>Lozar-Krive</i> (2015) study		108

Introduction

One of the most prevalent clinical conditions in newborn is hyperbilirubinemia (*Olusanya et al.*, 2015). Neonatal jaundice is a common clinical problem encountered during the neonatal period especially in the first week of life (*Bhutani et al.*, 2013).

The most common cause of jaundice is hemolytic jaundice. Hemolytic disease of the fetus and neonate (HDFN) is a group of hemolytic disorders occurring in the perinatal period. This term is generally used to designate immunemediated hemolytic process such as; Rh or ABO hemolytic disease (*Stockman*, 2001). Hemolysis can be due to a number of acquired (usually transient) or inherited (often chronic) conditions (*Perrone et al.*, 2012).

Carbon monoxide is a natural byproduct of the breakdown of protoporphyrin to bilirubin. Carboxyhemoglobin (COHb) is formed by the binding of carbon monoxide to hemoglobin. Thus, carboxyhemoglobin levels increase as a result of hemolysis (*Wu and Wang*, 2005).

Because heme breakdown yields equimolar amounts of carbon monoxide and biliverdin, bilirubin production can be indirectly assessed by measuring CO production (*Stark and Bhutani*, 2017).

Up to our knowledge there has been no previous studies correlating carboxyhemoglobin levels (measured invasively) with indirect bilirubin in term and near-term neonates measured since birth.

AIM OF THE WORK

The aim of this work is to correlate between carboxyhemoglobin levels (measured non-invasively) and indirect bilirubin levels in near term (35+ weeks) & term (37+ weeks) neonates so as to be able to use it as an earlier indicator of hemolysis and a predictor of subsequent hyperbilirubinemia.

Chapter 1

NEONATAL JAUNDICE

Definition & Background

Neonatal jaundice is yellowish discoloration of the skin, sclera, and mucous membranes due to accumulation of bilirubin pigment in the skin (*Mitra and Rennie*, 2017). The term jaundice is from the French word "jaune," which means yellow. Neonatal jaundice in most newborns is a mild and transient event, yet may lead to long-term neurological sequelae. Thus, it is imperative to identify newborns with jaundice as early as possible for proper treatment to avoid these complications (*Ogunfowora and Daniel*, 2006).

Incidence

Neonatal hyperbilirubinemia is a common clinical problem encountered during the neonatal period, especially in the first week of life (*Bhutani et al.*, *2013*). Approximately 85% of all term newborns and most premature infants develop clinical jaundice. Also, 6.1 % of well term newborns have a maximal serum bilirubin level >12.9 mg/dL. A serum bilirubin level >15 mg/dL is found in 3% of normal term babies (*Burke et al.*, *2009*).

Source of bilirubin

Bilirubin is not merely a nuisance molecule that has dire consequences, but it is an important antioxidant circulating in