

PET/CT in the Staging of Non-Small Cell Lung Cancer

Thesis

Submitted for Partial Fulfillment of the Master Degree in Radiodiagnosis

By

Nada Mohammed Farid Hassan Ghoneim M.B.B.Ch, Faculty of Medicine, Ain Shams University

Under supervision of Dr. Remon Zaher Elia

Assistant Professor of Radiology Faculty of Medicine – Ain Shams University

Dr. Aliaa Sayed Sheha

Lecturer of Radiology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

No words could express my deepest thanks and appreciation to Dr. Remon Zaher Elia, Assistant Professor of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for inspiring me with the idea of this work. His patience, precious advice and guidance enlightened my way throughout this work.

I am also deeply indebted to Dr. Aliaa Sayed Sheha, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her kind help, guidance, useful advices, continuous encouragement and support all through my entire work.

Finally, my deepest thanks to all my family and colleagues who helped me in the production of this work.

Nada Mohammed Farid

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Aim of the Study	4
Review of Literature	
Anatomy of Lungs	5
Technique	22
Pathology	44
Imaging Modalities of NSCLC	53
Role of PET/CT in TNM Staging of NSCLC	65
Patients and Methods	85
Results	90
Illustrative Cases	106
Discussion	117
Limitations	129
Conclusion	130
Summary	132
Refrences	134
Arabic Summary	

List of Tables

Table No.	Title	Page No.
m 11 (4)	D 1 1	
Table (1):	Bronchopulmonary segments	
Table (2):	Nodal stations and zones in the	
	lymph node map	
Table (3):	Anatomic Definitions and bound	
	the IASLC Lymph Node Stations	
Table (4):	Proposed standard patients prep	paration
	protocol for FDG PET and PET-CT	31
Table (5):	PET/CT Artifacts	34
Table (6):	Strengths, potential indication	is and
	limitations of the discussed in	imaging
	techniques of NSCLC	64
Table (7):	Eighth Edition of TNM staging	
	cancer	
Table (8):	Shows age, sex and histopath	
, ,	types of cases	•
Table (9):	Showing local extension of the tur	
_ = = = = = = = = = = = = = = = = = = =	CT versus PET-CT	
Table (10):	Shows that CT detected 18	
14610 (10)	ipsilateral pulmonary nodules th	
	detected by PET/CT but only 9	
	showed high FDG uptake	
Table (11):	Showing the sites of lymph nodes	
1 able (11).	involvement in CT versus PET-CT	<u> </u>
Table (12):	Showing the sites of distant med	
1 able (12).	by CT versus PET-CT	
Table (19).		
Table (13):	Showing that CT detected 9 c	
	contralateral pulmonary nodule	
	PET/CT also detected them but o	•
	them showed high FDG uptake	98

List of Cables (Cont...)

Table No.	Title	Page No.
Table (14):	Showing that CT detected 10 cas	ses of
	pleural effusion that PET/CT	also
	detected them but only 3 of them sl	nowed
	high FDG uptake and so be mali	gnant
	pleural effusion	99
Table (15):	Showing T staging by CT and PET/C	CT100
Table (16):	Showing N staging by CT and PET/O	CT 101
Table (17):	Showing M staging by CT and PET/0	CT102
Table (18):	Showing final staging of the patier	nts by
	CT and PET/CT	103
Table (19):	Showing the number of operable	e and
	inoperable cases by CT versus PET-	CT104
Table (20):	Showing how PET-CT affects	initial
	staging of the patients	

List of Figures

Fig.	No.	Title	Page No.
Fig.		Anatomy of the right lung	
Fig.		Anatomy of the left lung	
Fig.	(3):	Bronchopulmonary segments of the	_
		lung,	
Fig.	(4):	Bronchopulmonary segments of th	
T3* .	(F)	lung,	
Fig.		Lung segments by CT in colors	
Fig.	(6):	Anatomic organization of tracheobro	
Ti _o	(7).	Illustration shows the IASLC lymph	13
Fig.	(1):		
Fig.	(8).	map Stations 3a and 3p	
Fig.		Stations 2R, 2L, 3a, 3p, 4R, and 4L	
_	(10):	Stations 5 and 6	
_	(10): (11):	Station 7	
_	(11). (12):	Stations 8 and 9	
_	(12). (13):	Stations 10R and 10L	
_	(14):	Stations 11R and 11L	
_	(14). (15):	Uptake of 18F-FDG	
_	(16):	Typical imaging protocol for con	
rıg.	(10).	PET/CT	
Fig.	(17):	FDG uptake in brwon fat	
_	(18):	Misregistration artifacts in head and r	
_	(19):	Dose Extravasation artifact	
_	(20):	Attenuation correction artifacts	
_	(21):	Truncation artifact	
Fig.		Squamous cell carcinoma, gross	
_	(23):	Squamous cell carcinoma, microscopic	
_	(24):	Adenocarcinoma, gross	
_	(25):	Adenocarcinoma, microscopic	
_	(26):	Large cell carcinoma, gross	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (27):	CT and MPR for clarification of ch	nest wall
	invasion by lung mass	55
Fig. (28):	CT and MIP for better detection	of lung
	nodule	
Fig. (29):	CT and Virtual bronchoscopic v	
	tumor lesion in left main stem brond	
Fig. (30):	CT and Virtual bronchoscopic v	
	tumor lesion in left main stem l	
	with enlarged LN and associaed	external
	compression 58	
Fig. (31):	Diffusion weighted magnetic re	
	imagingfor right upper lobe nodule.	
Fig. (32):	Integrated positron emission tom	0 1 1
	(PET)/computed tomography (CT) f	
	detection of lung mass	
Fig. (33):	Anatomic drawing illustrating	
T ! (0.1)	descriptors	69
Fig. (34):	Anatomic drawing illustrating	
T! (0F)	descriptors	
Fig. (35):	Anatomic drawing illustrating	
F' . (90)	descriptors	
Fig. (36):	Anatomic drawing illustrating	
E: ~ (95).	descriptors	
Fig. (37):	Anatomic drawing illustrating	
Fig. (90).	descriptors Anatomic drawing illustrating t	
Fig. (38):	descriptordescriptor	
Fig. (39):	Anatomic drawing illustrating to	
T. 18. (00):	descriptor	
Fig. (40):	Anatomic drawing illustrating t	
1 1g. (40):	descriptor	
Fig. (41):	Adenocarcinoma in situ (Tis) with	
11g. (11).	olass nodule	77

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Fig. (42):	Poorly differentiated squamous carcinoma with agtelactatic lung		78
Fig. (43):	N descriptors in moderately differen		10
1 19. (10).	squamous cell carcinoma		79
Fig. (44):	False-negative FDG PET/CT findin normal-sized lymph nodes in LCC	gs in	
Fig. (45):	Poorly differentiated squamous		
8 \ - /	carcinoma with adrenal mets		81
Fig. (46):	Pleural metastases in poorly differen	tiated	
	adenocarcinoma		82
Fig. (47):	Bone metastases moderately differen		
	lung adenocarcinoma		83
Fig. (48):	Extrathoracic nodal metastases in	_	
E' - (40)	adenocarcinoma		
Fig. (49):	Pie chart showing gender of the patien		91
Fig. (50):	Pie chart showing histological types studied lesions		01
Fig. (51):	Bar chart showing local extension		91
11g. (01).	tumour by CT versus PET-CT		94
Fig. (52):	Bar Chart: Showing the sites of		0 1
8 (= /	nodes groups involvement in CT v	-	
	PET-CT		96
Fig. (53):	Bar Chart Showing the sites of d	istant	
	metastases by CT versus PET-CT		99
Fig. (54):	Bar Chart showing T staging by C' PET/CT		100
Fig. (55):	Bar Chart showing N staging by C'	T and	
	PET/CT.		101
Fig. (56):	Bar Chart showing M staging by C' PET/CT		
Fig. (57):	Bar Chart Showing the number of op	erable	
	and inoperable cases by CT versus PE		104
Fig. (58):	Bar chart showing how PET-CT a		
	initial staging of the patients		105

List of Abbreviations

Abb.	Full term
2D:	Two dimensional
	Three dimensional
<i>BAT</i> :	Brown adipose tissue
<i>CECT</i> :	Contrast enhanced Computed Tomography
<i>CT</i> :	Computed tomography
<i>DWI</i> :	Diffusion weighted images
<i>EBUS</i> :	Endobronchial Ultrasound
EBUS-TBNA:	Endobronchial Ultrasound -guided transbronchial needle aspiration
<i>EUS</i> :	Endoscopic Ultrasound
FDG:	Fluorodeoxyglucose
<i>GLUT</i> :	Glucose transporter
<i>IASLC</i> :	International Association for the Study of
	Lung Cancer
<i>LCC</i> :	Large cell carcinoma
<i>LN</i> :	Lymph node
<i>MIP</i> :	Maximum intensity projection
<i>MPR</i> :	$Multiplanar\ reconstruction$
<i>MRI</i> :	Magnetic resonance imaging
<i>NCCN</i> :	National Comprehensive Cancer Network
<i>NSCLC:</i>	Non small cell lung cancer
<i>PET</i> :	Positron emission tomography
SBRT:	Stereotactic body radiation therapy
SCC:	$Squamous\ cell\ carcinoma$
SUV:	Standrized uptake value
Tc99mMDP:	Technetium-99m methylene diphosphonate
<i>VATS</i> :	Video-assisted thorascopic surgery
<i>VB</i> :	Virtual bronchoscopy

Introduction

Tung cancer is the leading cause of tumor related deaths worldwide, and non-small-cell lung cancer (NSCLC) represents about 80% of all lung cancers (Jemal et al., 2001). It is still a main contributor to the global cancer mortality burden (Silvestri et al., 2013).

The optimal treatment of NSCLC depends on accurate disease staging that based on the TNM system (Nair et al., 2011). TNM system includes tumor size, regional nodal involvement, and the presence of metastasis. Accurate evaluation of the presence or absence of metastases in mediastinal and hilar lymph nodes is a critical factor that determine operability and long-term survival in NSCLC patients. Surgical treatment can be expected in 70% of patients with N0 stage and up to 24% of patients with N2 stage; however, surgery is generally not indicated in patients with N3 stage cancer (Konishi et al., 2003).

Unfortunately, only 25% of patients will have resectable disease at presentation. Of those with stage I and II disease, 20 and 40%, respectively, will ultimately relapse with metastatic disease that was occult at the time of presentation (Kelsey et al., *2009*).

Although X-ray chest radiograph was simple and convenient, its high rate of missed diagnosis making the credibility of clinical diagnosis was low (Zhang et al., 2016).

With the continuous development of medical research and clinical treatment level, multi-slice spiral CT imaging diagnosis technology is widely used in clinical diagnosis of malignant tumors (*Chen*, 2016).

It could achieve a comprehensive analysis on the lesion density, size, location, number, shape, edge, the surrounding details and the internal structure, which not only improve the detection rate, but also reduce the rate of misdiagnosis. In other words, this technique provided substantial basis for the diagnosis and treatment of primary lung cancer patients (*Harred et al.*, 2012).

Although it provides anatomic information and it has poor sensitivity (approximately 50%) and specificity (approximately 85%) for detecting mediastinal tumor (Silvestri et al., 2007).

Malignant cells show high rates of glycolysis than most surrounding normal structures (Dahlbom et al., 1992). Fuorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) has been introduced and developed as an effective modality for tumor staging in a variety of cancers (Marom et al., 1999). FDG PET images may be more sensitive than CT because alterations in tissue metabolism generally appear first

before the anatomical changes (Shim et al., 2005). However, PET has relatively poor spatial resolution, thus limits its anatomical localization of lesions (Bruzzi and Munden, 2006).

Integrated PET/CT provides information about anatomy and metabolism by combining morphological CT data and functional PET data (Kim et al., 2006).

18F-FDG PET/CT scanning is now a standard procedure for staging patients with NSCLC. (NCCN, 2010) and therefore implemented in various international guidelines for presurgical evaluation (Silvestri et al., 2013).

AIM OF THE STUDY

he aim of this study is to evaluate the diagnostic accuracy of 18F-FDG PET/CT in detecting metastases for staging in NSCLC patients.

Chapter (1) ANATOMY OF LUNGS

They are located on either side of the heart and other mediastinal structures, and occupy most of the thoracic cavity (*Strandring*, 2016).

The right lung is divided into superior, middle and inferior lobes by its oblique (major) and horizontal (minor) fissures (Fig 1). The superior, lengthier oblique fissure separates the inferior from the superior and middle lobes. It starts posteriorly at the level of fourth thoracic vertabra. It descends across the fifth intercostal space and follows the sixth rib to the sixth costochondral junction (*Strandring*, 2016). The shorter horizontal fissure separates the superior and middle lobes. It passes from the oblique fissure, near the mid-axillary line, horizontally to the anterior border of the lung, then passes posteriorly to the hilum on the mediastinal surface (*Strandring*, 2016). The horizontal fissure is usually visible on a frontal chest radiograph while the oblique fissure is usually visible on a lateral radiograph. The smaller middle lobe is wedged between the superior and inferior lobes (*Strandring*, 2016).