

Optical Characterization of Highly Efficient Nanostructured Solar Cells

Thesis Submitted to Faculty of Science-Ain Shams
University in partial fulfillment for Degree of
Master in Physics

By
Amr Hisham Khalaf Mahmoud
B.Sc. in Physics 2014

Supervisors

Assoc.Prof Dr. Hala Mohamed Hosny

> Physics Department Faculty of Science Ain Shams University

Assoc.Prof Dr. Mohamed Farahat Othman

Mathematics and Engineering Physics Department Faculty of Engineering Mansoura University

Assoc.Prof Dr. Mohamed Hassan Abdel-Aziz

Basic Science Department
Faculty of computers and information Sciences
Ain Shams University

CERTIFICATION OF APPROVAL

Optical Characterization of highly efficient nanostructured solar cells

Amr Hisham Khalaf Mahmoud

	Signature
Assoc.Prof	
Dr Hala Mohamed Hosny	•••••
Physics Department	
Faculty of Science	
Ain Shams University	
Assoc.Prof	
Dr Mohamed Hassan Abdel-Aziz	•••••
Basic Science Department	
Faculty of computers and information Sciences	
Ain Shams University	
A Design	
Assoc.Prof	
Dr Mohamed Farahat Othman	•••••
Mathematics and Engineering Physics Department	
Faculty of Engineering	
Mansoura University	

Optical Characterization of highly efficient nanostructured solar cells

Name: Amr Hisham Khalaf Mahmoud

Degree: M.Sc

Department: Physics

Faculty: Science

University: Ain Shams

Graduation Date: 2014 - Ain Shams University

Registration Date: 3/2016

Grant Date: 2019

Contents

Acknowledgments	₩ 7••
Abstract	Vii
List of Publications	ix
	Xi
List of Symbols	xii
List of Abbreviations	v:-
List of Figures	Xiv
List of Table	xvi
	xxii
Chapter (1) Introduction	1
1.1 Renewable Energy	_
1.2 Rise of Nanophotonic	2
	5
1.3 Why Thin Solar Cells?	5
1.3.1-Reduced Cost	
1.3.2-Flexibility	6
	6
1.4 Importance of Silicon	7
1.5 Thesis objective	_
1.6 Summary	7
	7

-	er 2 Basic Physics of Solar Cells	9
2.1 Int	roduction	9
2.1.1	Solar Irradiance	10
2.1.2	Atmosphere	11
2.1.3	Air mass 1.5G reference spectrum	11
2.1.4	Semiconductors	11
2.1.5	Bandgap	12
2.1.6	Intrinsic carriers	13
2.1.7	Doping	13
2.1.8	Equilibrium carrier concentrations	14
2.1.9	Light absorption	15
2.1.10	Absorption depth	16
2.1.11	Carrier movement	16
2.1.12	Diffusion	17
2.1.13		18
	Recombination	
2.1.15	Surface recombination	18
2.2 PN	-junction	20
 2.2.1	Dark behavior	21
		23

2.2.2	Solar Cell behavior	23
	Ideal solar cell equations	25
2.2.4	Shockley-Queasier limit or detailed balance	26
2.3 Los	ss mechanisms	27
2.3.1	Optical losses	27
2.3.2	Resistive losses	
	Recombination losses	29
2.4 Ge	nerations of Solar Cells	30
2.4.1	First Generation PV	31
2.4.1.1	Monocrystalline solar panels	32
	.a Advantages	32
	.b Disadvantages	32
	Polycrystalline Silicon Solar Cells	33
	.a Advantages	33
	.b Disadvantages	34
2.4.2	Second Generation PV	34
2.4.2.1	` '	34
1.4.2.1	.a Advantages	35
1.4.2.1	.b Disadvantages	36
2.4.3	Third Generation	36
		38

2.4.3.1	Dye-Sensitized Solar Cell Technology			
	2 Perovskite solar cells			
	trapping in solar cell			
2.5.1 N	Nanowire Solar Cell			
	Plasmonic Solar Cell			
2.5.3 S	urface Texturing Solar Cell			
2.6 Sumi	mary			
_	3: Computational techniques			
3.1 Why	computational modeling?			
3.2 Over nano	view of numerical methods for highly efficient structured Solar Cells			
3.3 Adva	ntages of FDTD method			
	view of FDTD method			
•	uency - dependent materials in FDTD Method			
3.6 Boun	dary conditions			
	iodic boundary conditions (PBCs)			
	fectly matched layers (PML)			
	erical FDTD solutions			
	to avoid the divergence in FDTD simulation?			
3.8.1 Dt	·			
3.8.2 PM	L considerations			

3.9 The electrical Simulator
3.10 Summary
Chapter 4: Highly Efficient Nanopyramid Solar Cell
4.1 Introduction
4.2 Optical and electrical simulation strategy
4.3 Results and discussion
4.3.1 Optical analysis
4.3.2 Electrical analysis
4.3 Summary
Chapter 5: Conclusions and future work
5.1 Conclusions
5.2 Future work
References

Acknowledgments

I would like to thank all professors and colleagues who supported me to the research work presented in this thesis.

I would like to dedicate this thesis to the soul of Dr. Hala Hosny. I am indebted to Dr. Hala Hosny, Associate Professor at the department of Physics, Faculty of Science, Ain Shams University, for her encouragement, advice and guidance throughout this envelopment and in the completion of this work. Deep appreciation is owed to her for providing me interesting ideas, sharing her knowledge and aiding me through writing theses.

I would like to thank Dr. Mohammed Farahat, Associate Professor at Nanotechnology Engineering Program, University of Science and Technology, Zewail City of Science and Technology and ASSOC Professor at Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University for suggesting a novel and excellent point of research along with his continuous encouragement, valuable and abundant discussions throughout this work. His careful reading of the manuscript is greatly acknowledged.

My deepest gratitude goes to Dr. Hassan Ramdan and Dr. Mohammed Hassan both from Basic Science department at faculty of Computer and Information Sciences, Ain Shams University for their most enlightening support and encouragement. This dissertation was accomplished with the help and support of several collaborators. I would like to express my deep gratitude to Dr. Mohamed Hussien, Assistant Professor of photonics at Zewail City of Science and Technology as well as at Department of Physics, Faculty of Science, Ain Shams University, for his continuous and invaluable guidance. His professional capabilities and the endless support that he has given me through my study will always be recalled and appreciated. He was always willing to answer and discuss any questions.

I am very fortunate to have been able to work with a number of very dedicated and talented research colleagues at photonics in Zewail City of Science and Technology. I would like to thank Dr.Shimaa ali for collaborations through training in clean room.

I would like to specially thank Prof. Salah Obayya the Director of the Center for Photonics and Smart Materials (CPSM) at Zewail City in being an inspiration for me to take up the field of photonics not only as a field of research but also as a career. I appreciate all his contributions of time, ideas, and getting fund to make all research work from CPSM are experience stimulating and productive.

I would like to specially thank Prof. Ahmed Zewail for the opportunity to contribute to the Egypt National project: Zewail City of Science and Technology.

I thank the CPSM researchers for effective suggestions and discussions.

I would like to dedicate my work to my beloved mother and sister as well as my uncle. None of my achievements would not have been possible without their absolute love and support.