Minimal Residual Disease Assessment by Flow Cytometry in B-lineage Acute Lymphoblastic Leukemia to Assess Response to Treatment and Impact on Outcome

Thesis

Submitted for Partial Fulfillment of M.D of Clinical Hematology

Presented by **Ayman Abd Elsalam Mahmoud**(M.B., B.Ch. M.Sc.) Under Supervision of

Prof. Dr. Maha Tawfik El Zimaity

Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Prof. Dr. Mohamed Mahmoud Moussa

Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

Dr. Raafat Mohamed Abdelfattah

Consultant of Medical Oncology and Hemato-oncology National Cancer Institute – Cairo University

Dr. Eman Zaghloul Kandeel

Assistant Professor of Clinical Pathology National Cancer Institute – Cairo University

Dr. Amro Mohamed Sedky El-Ghammaz

Assistant Professor of Internal Medicine and Hematology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

Acknowledgement:

First, thanks to Allah, the most compassionate and most merciful as we feel his great care, support and guidance in every step in our life.

I wish to express my most sincere; heart felt appreciation and deep thanks to:

Prof. Dr. Maha Tawfik El Zimaity

Professor of internal medicine and hematology- faculty of medicine- Ain shams university. For generous supervision, valuable instruction, careful reading, beneficial remarks and unlimited encouragement throughout the whole work.

I would like to express my sincere thank deep appreciation to:

Prof. Dr. Mohamed Mahmoud Moussa

Professor of internal medicine and hematology- faculty of medicine- Ain shams university.

For his support, encouragement, cooperation and his devoted time and effort in this study.

I wish to express my special thanks and consideration to:

Dr. Raafat Mohamed Abdelfattah

Consultant of medical oncology and hemato-oncology- National cancer institute-Cairo university.

For his valuable comments and support during the preparation of the study.

I would like to express my sincere thank deep appreciation to:

Dr. Eman Zaghloul Kandeel

Assistant Professor of Clinical Pathology- National cancer institute- Cairo university. For her support, encouragement, cooperation and her devoted time and effort in this study.

I wish to express my special thanks and consideration to:

Dr. Amro Mohamed Sedky El-ghammaz

Assistant Professor of Internal Medicine and Hematology- faculty of medicine- Ain shams university. For generous supervision, valuable instruction, careful reading, beneficial remarks and unlimited encouragement throughout the whole work.

List of contents:

1. List of abbreviations	III
2. List of tables	VI
3. List of figures	IX
4. Abstract	XV
5. Introduction	1
6. Aim of the work	3
7. Epidemiology	4
8. Pathogenesis	6
9. Risk factors	11
10.Clinical presentation	17
11. Diagnosis of ALL	
12. Classification of ALL	28
13. Cytogenetics and Molecular Genetics	30
14. Prognostic Factors and Risk Stratification	42
15. Treatment approaches in ALL	49
 Treatment of Ph-negative AYA ALL 	53
■ Treatment in adolescents 15-19 years	54
■ Treatment in young adults 20 - 39 years	
 Treatment of adults with ALL 	
Treatment of older adults with ALL	
■ Treatment of Ph positive ALL	

 Allogenic HSCT in ALL 	67
 Novel Therapies in ALL 	72
16. Minimal residual disease.	90
 Methods of MRD Assessment. 	92
■ Interpretation of MRD results.	101
Prognostic significance of MRD	105
■ MRD in the setting of chemotherapy	106
■ MRD in the setting of SCT	113
■ MRD in Ph positive ALL	119
■ MRD in the era of novel agents	121
 MRD monitoring in MRD-negative patients 	124
 MRD as Therapeutic Target. 	125
17.Patient and methods	130
18. Results	141
19. Discussion	210
20. Summary	219
21. Conclusion	221
22. Recommendation.	
23. References	223
24. Arabic summary	270

List of abbreviation

ABL: Abelson murine leukemia

A-CGH: array-comparative genomic hybridization

ALL: acute lymphoblastic leukemia

ALLO-SCT: allogenic stem cell transplantation

AML: acute myeloid leukemia

ASO: allele-specific oligonucleotide

BCP: B cell precursor

BCR: B-cell receptor

BCR: breakpoint cluster region

BFM: Berlin-Frankfurt-Münster Group

CALGB: cancer and leukemia group B

CAR: Chimeric antigen receptor

CCR: continuous complete remission

CIR: cumulative incidence of relapse

CMR: complete molecular remission

CNS: central nervous system

COG: children oncology group

CR: complete remission

CRLF2: cytokine receptor-like factor 2

CRS: cytokine release syndrome

CTLA-4: cytotoxic T lymphocyte antigen-4

DFS: disease free survival

DIC: disseminated intravascular coagulation

EFS: event free survival

FISH: fluorescence in situ hybridization

GIMEMA: Gruppo Italiano Malattie EMatologiche dell'Adulto

GMALL: German multicenter acute lymphoblastic leukemia

GRAALL: French Group for Research on Adult ALL

GVHD: graft versus host disease

GVL: graft versus leukemia

HR: high risk

HSCT: hematopoietic stem cell transplantation

HTS: high-throughput sequencing

IPT: immunophenotyping

K-M: Kaplan Meier

LFS: leukemia free survival

MAC: myeloablative conditioning

MDACC: MD Anderson Cancer Center

MFC: multiparametric flow cytometry

MPO: myeloperoxidase

MRD: minimal residual disease

MSD: matched sibling donors

NGS: Next-Generation Sequencing

NILG: Northern Italian Study Group

NRM: non-relapse mortality

NSE: nonspecific esterase

OS: overall survival

PALG: Polish Adult Leukemia Group

PAS: Periodic acid-Schiff

PD-1: programmed cell death-1

PETHEMA: Spanish Programa Español de Tratamientos en Hematologia

PFS: progression-free survival

RFS: relapse free survival

RI: relapse incidence

RIC: reduced intensity conditioning

RR: relapse rate

RT-qPCR: real time quantitative polymerase chain reaction

SBB: Sudan black B

SNP: single nucleotide polymorphisms

SR: standard risk

TCP: T-cell precursor

TKI: tyrosine kinase inhibitors

TLC: total leucocytic count

URD: unrelated donors

List of tables:

(Table-1): Immunophenotypes of ALL	27
(Table-2): WHO classification of acute lymphoblastic leukemia	29
(Table-3): Characteristics of conventional and new high-throughput techniques	
(Table-4): Age and Sex distribution ALL patients	141
(Table-5): Initial CBC of ALL patients	142
(Table-6): Initial BMA of ALL patients	143
(Table-7): Immunophenotype of ALL patients	143
(Table-8): Cytogenetics of ALL patients	144
(Table-9): Risk stratification of ALL patients based on conventional risk facto	rs-145
(Table-10): Risk stratification of ALL patients based on MRD and convention factors	
(Table-11): Treatment protocol and complete remission rate	147
(Table-12): BMA and MRD at D14, D28 and post consolidation	148
(Table-13): Relapse rate and site of relapse in ALL patients	149
(Table-14): Cause of death in ALL patients	150
(Table-15): Correlation of outcome at different time points with age groups	151
(Table-16): Correlation of outcome at different time points with sex	153
(Table-17): Correlation of outcome at different time points with TLC	154
(Table-18): Correlation of outcome at different time points with IPT	-156
(Table-19): Correlation of outcome at different time points with cytogenetics-	-157
(Table-20): Rate of CR in different risk groups in relation to treatment protoco	ol-159

(Table-21): Correlation of outcome at different time points with risk groups160
(Table-22): Correlation of risk groups with relapse rate161
(Table-23): Correlation of MRD refined risk groups with relapse rate163
(Table-24): Correlation of conventional risk factors with relapse rate164
(Table-25): Correlation of outcome at different time points with conventional risk factors using Pearson correlation coefficient166
(Table-26): Univariate effects of MRD assessed during induction (D14) on RI168
(Table-27): Univariate effects of MRD assessed after induction on RI170
(Table-28): Univariate effects of MRD assessed after consolidation on RI172
(Table-29): median disease free survival of the 56 adult ALL patients174
(Table-30): median overall survival of the 56 adult ALL patients175
(Table-31): median disease free survival of standard and high risk patients176
(Table-32): median overall survival of standard and high risk patients177
(Table-33): median disease free survival of MRD based risk groups178
(Table-34): median overall survival of MRD based risk groups179
(Table-35): Median disease free survival of MRD refined standard and high risk groups180
(Table-36): median overall survival of MRD refined standard and high risk groups181
(Table-37): Median disease free survival in relation to treatment protocols182
(Table-38): Median overall survival in relation to treatment protocols183
(Table-39): Median disease free survival of SR and HR in relation to treatment protocols184
(Table-40): Median overall survival of SR and HR in relation to treatment protocols-

(Table-41): Median disease free survival in relation to outcome at different time points186
(Table-42): Median overall survival in relation to outcome at different time points
(Table-43): Median disease free survival in relation to age, TLC, IPT and cytogenetics198
(Table-44): Median overall survival in relation to age, TLC, IPT and cytogenetics203
(Table-45): Multivariate analysis of covariates for disease free survival208
(Table-46): Multivariate analysis of covariates for overall survival209

List of figures:

(Fig1): Genetic pathogenesis of B lymphoblastic leukaemia at diagnost relapse	
(Fig2): Morphology of blasts in acute lymphoblastic leukemia	24
(Fig3): Schematic diagram showing the detection limit of cytomorphology difference between nondetectable and truly negative MRD	
(Fig4): Proposals for definition of MRD terms in ALL	104
(Fig5): Immunophenotype of ALL patients	144
(Fig6): Cytogenetics of ALL patients	145
(Fig7): Risk stratification of ALL patients	146
(Fig8): MRD refined risk stratification of ALL patients	146
(Fig9): Relapse rate of ALL patients	149
(Fig10): Cause of death in ALL patients	150
(Fig11): Relation of outcome at different time points with age groups	152
(Fig12): Relation of outcome at different time points with sex	153
(Fig13): Relation of outcome at different time points with TLC	155
(Fig14): Relation of outcome at different time points with IPT	156
(Fig15): Relation of outcome at different time points with cytogenetics	158
(Fig16): Rate of CR in different risk groups in relation to treatment protocol	159
(Fig17): Correlation of outcome at different time points with risk groups	161
(Fig18): Correlation of risk groups with incidence of relapse	162
(Fig19): Correlation of MRD refined risk groups with relapse rate	163
(Fig20): Correlation of conventional risk factors with relapse rate	165
(Fig21): K–M estimates of relapse of the 56 adult ALL patients	167

(Fig22): K–M estimates of relapse for all patients according to MRD evaluation during induction (D14)168
(Fig23): K–M estimates of relapse for standard risk patients according to MRD evaluation during induction (D14)169
(Fig24): K–M estimates of relapse for high risk patients according to MRD evaluation during induction (D14)169
(Fig25): K–M estimates of relapse for all patients according to MRD evaluation after induction170
(Fig26): K—M estimates of relapse for standard risk patients according to MRD evaluation after induction171
(Fig27): K–M estimates of relapse for high risk patients according to MRD evaluation after induction171
(Fig28): K—M estimates of relapse for all patients according to MRD evaluation after consolidation172
(Fig29): K–M estimates of relapse for standard risk patients according to MRD evaluation after consolidation173
(Fig30): K–M estimates of relapse for high risk patients according to MRD evaluation after consolidation173
(Fig31): Disease free survival of the 56 adult ALL patients174
(Fig32): Overall survival of the 56 adult ALL patients175
(Fig33): Disease free survival of standard and high risk patients176
(Fig34): Overall survival of standard and high risk patients177
(Fig35): Disease free survival of MRD based risk groups178
(Fig36): Overall survival of MRD based risk groups179
(Fig37): Disease free survival of MRD refined standard and high risk groups180
(Fig38): Overall survival of MRD refined standard and high risk groups181
(Fig39): Disease free survival in relation to treatment protocols182

(Fig40): Overall survival in relation to treatment protocols	183
(Fig41): Disease free survival of SR and HR in relation to treatment protocols-	-184
(Fig42): Overall survival of SR and HR in relation to treatment protocols	185
(Fig43): Disease free survival in relation to D14 blast%	-187
(Fig44): Disease free survival in relation to D28 blast%	-188
(Fig45): Disease free survival in relation to D14 MRD	189
(Fig46): Disease free survival in relation to D28 MRD	190
(Fig47): Disease free survival in relation to post consolidation MRD	191
(Fig48): Overall survival in relation to D14 blast%	193
(Fig49): Overall survival in relation to D28 blast%	194
(Fig50): Overall survival in relation to D14 MRD	195
(Fig51): Overall survival in relation to D28 MRD	-196
(Fig52): Overall survival in relation to Post consolidation MRD	197
(Fig53): Disease free survival in relation to age	199
(Fig54): Disease free survival in relation to TLC	-200
(Fig55): Disease free survival in relation to IPT	-201
(Fig56): Disease free survival in relation to cytogenetics	202
(Fig57): Overall survival in relation to age2	204
(Fig58): Overall survival in relation to TLC	205
(Fig59): Overall survival in relation to IPT	-206
(Fig60): Overall survival in relation to cytogenetics	207

Abstract

The prognostic value of minimal residual disease (MRD) assessed by multi-parameter flow cytometry (MFC) was investigated among 56 adult patients with B-cell acute lymphoblastic leukaemia (B-ALL) treated between 2014 and 2018 using regimens including the Dana Farber and Hoelzer protocols. In this study, 44 (78.6%) achieved complete remission (CR) with a relapse rate of 38.6% (17 cases out of 44 cases) after a median follow up of 15 months. median age was 29.5 years (range18 to 60). Median white blood cell count (WBC) was 17.75 x 10³ (range, 0.38-340 x 10³/ul). MRD by MFC was assessed with a sensitivity of 0.01%, using a 7 marker, 4-colour panel on bone marrow specimens obtained at D14, D28 and post consolidation. MRD \leq 0.01 at D14 was associated with improved disease-free survival (DFS) and overall survival (OS) (P <0.001 and P < 0.001 respectively). Similarly MRD < 0.01 at D28 and undetectable levels post consolidation was associated with improved DFS (P < 0.001 and P < 0.001 respectively) and OS (P <0.001 and P <0.001 respectively). Multivariate analysis including age, WBC at presentation, IPT, cytogenetics, treatment protocol and MRD status at D14, D28 and post consolidation, indicated that MRD negative status was an independent predictor of DFS. Achievement of an MRD negative state assessed by MFC is an important predictor of DFS and OS in adult patients with ALL.

Keyword: acute lymphoblastic leukemia, minimal residual disease.