

Improvement of the Antimicrobial Properties of Nanoparticles and Application in Water Purification

Thesis Submitted for Ph.D. degree in Microbiology

By Dina Mohammed Sherif Moheb El-Kahky

B.Sc. in Microbiology (2007) Tanta University M.Sc. in Microbiology (2013) Menoufia University

Under the supervision of

Prof. Saadia Mohamed Easa

Assistant Professor of Microbiology, Faculty of Science Ain Shams University

Prof. Nemat Mostafa Awad

Professor of Microbiology, National Research Centre

Prof. Magdy Attia Mohamed

Professor of Microbiology, National Research Centre

Dr. Eman Ahmed Mohamed Helmy

Assistant Professor microbiology and biotechnology of Regional Centre Microbiology and Biotechnology

Department of Microbiology Faculty of Science Ain Shams University

Improvement of the Antimicrobial Properties of Nanoparticles and Application in Water Purification

Thesis Submitted for the Ph.D. degree of science "Microbiology"

By Dina Mohammed Sherif Moheb El-Kahky M.Sc. (2013)in Microbiology

Department of Microbiology Faculty of Science Ain Shams University

Thesis Submitted for Ph. Ddegree in Microbiology

Name:Dina Mohammed Sherif Moheb El-Kahkv

Title: Improvement of the Antimicrobial Properties of Nanoparticles and Application in Water Purification

Supervisors: Approval

Prof. Saadia Mohamed Easa **(1)**

Assistant Professor of Microbiology- faculty of Science - Ain Shams University

(2) Prof. Magdy Attia Mohamed

Professor of Microbiology - National Research Centre

(3) Prof. Nemat Mostafa Awad

Professor of Microbiology - National Research Centre

Dr. Eman Ahmed Mohamed Helmy

Assistant Professor microbiology and biotechnology of Regional Centre Microbiology and Biotechnology

Examination Committee:

Prof. Mohamed Ab. Rizk **(1)**

Professor of Microbiology- botany and microbiology department faculty of Science - Cairo University

Prof. Mohamed Farouk Ghaly

Professor of Microbiology-Botany department faculty of Science -Zagazig University

Prof. Saadia Mohamed Easa

Assistant Professor of Microbiology- faculty of Science - Ain Shams University

Prof. Magdy Attia Mohamed (4)

Professor of Microbiology - National Research Centre

Declaration

This thesis has not previously submitted for any other universities.

Dina Mohammed Sherif Moheb El-Kahky

Acknowledgement

"First and Foremost, I am deeply thankful to GOD, by grace of whom this work was accomplished".

I give my sincerest thanks and appreciation to my Prof. Dr. Magdy Attia Mohamed (Professor of Agricultural Microbiology Microbiology, Department, National Research Centre) Prof. Dr. Saadia Mohamed Easa (Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University), and Prof. Dr. Nemat Mostafa Awad (Professor of Microbiology, Agricultural Microbiology Department, National Research Centre) for suggesting the point, for their skilful eye for perfection, tireless assistance with their professional guidance throughout this work. Warmest and deeply heart thanks, for giving me the honor of working under their supervision, their enduring support and unforgettable sincere encouragement. My eternal love and gratitude to my wonderful father, mother, brother and sister without their love, patience, support and understanding, my accomplishments would not have been possible.

My deep thanks to Dr. Eman Helmy(Assistant Professor of Regional Centre Microbiology and Biotechnology) for her help and support throughout the work.

Finally, I really would like to thank my friends and colleagues who helped me even by award of support, those who really affected and still affecting my life everywhere.

ABSTRACT

This studying is referring to identified of an easy and eco-friendly way for biosynthesis of nanoparticles, nanocomposite. Using isolates to metal ions leads to nanoparticles formation and using sonic vibro cell for synthesis nanocomposite. Nanoparticles were in the range at about 5-130 nm dimension. Nanoparticles and nanocomposite were examined utilizing Ultra Vilot-Visible spectroscopy, Transmission Electron Microscopy "TEM", X-ray Diffraction "XRD", and Fourier Transform Infrared Spectroscopy "FTIR" analysis, protein fractions and Maldi-TOF Analysis to identify their effectiveness in antimicrobial activities. For production of nanoparticles and nanocopmosite different human pathogenic bacterial strains were used. All the microbes were inhibited at low concentrations of the tested nanoparticles. The inhibition caused by nanoparticles was gradually increased with E. coli and Pseudomonas aeruginosa (Gram negative) compared with *Staph. aureus* and MRSA (Gram positive). The antitumor activity of HCT-116 (colon carcinoma cell) cancer cells. Where the results indicate high cytotoxic effect for synthesized silver nanoparticles 500µl- Zinc oxide nanoparticles 500 µl with the half maximal inhibitory concentration $IC_{50}=73.7 \mu l$, nanocomposite against cancer HCT-116 colon carcinoma cell line. For water purification from heavy metals and also antibacterial, the results indicate that the maximum adsorption of heavy metals with almost all adsorbents were obtained with an adsorbent dosage was considered the optimum time at about 15 minute. Nanocomposites showed higher growth inhibitory effect on Shigella, compared to Salmonella. Salmonella and Shigella growth was inhibited by 100 % inhibation when exposed to 2.17 mg/mL of silver, zinc oxide and titanium dioxide nanoparticles.

ABBREVIATIONS

(w/v) Weight per volume

Abs. Absorption

AG El Gharbia El Agezia El-

Mahalla

Ag⁺ Silver ion

AgNO₃ Silver nitrate

Asp. Aspergillus

ca. calibration

Cd Cadmium

cfu colony forming unit

Conc. Concentration

Cr Chromium

Cu Copper

d. Day/Days

DNA Deoxyribonucleic acid

E.coli Escherichia coli

EDX Energy Dispersive X - ray

Spectroscopy

Fusarium F.

Fe Iron

Fourier Transform Infrared **FTIR**

Spectroscopy Analysis

Gram g.

Hour/hours hrs.

The half maximal inhibitory IC_{50}

concentration

K. Klebsiella

Kilo Dalton kDa

kV**Kilovolts**

LA Luria Agar

Luria Bertani LB

M El-Mahalla

ML molar (mol / litre)

Mass to charge ratio m/z

matrix-assisted laser

MALDI-TOF desorption/ionization/ time-of-

flight mass spectrometer)

minute min.

mm. Millimeter

mM millimolar

Mn Manganese

MRSA methicillin-resistant

Staphylococcus aureus

NADH Nicotinamide Adenine

Dinucleotide

NADPH Nicotinamide Adenine

Dinucleotide Phosphate

Ni Nickel

nm. Nanometer

No. number

NPs nanoparticles

O.D Optical Density

P.aeruginosa Pseudomonas aeruginosa

PAGE Electrophoresis of native

protein

Pb Lead

PDA Potato Dextrose Agar

PDB Potato Dextrose Broth

PNSE Plan of National Sant

Environment

ppm. parts per million

PVC Tube Plastic Vinyl Corp Tube

RNA ribonucleic acid

rpm. rotations per minute

S. aureus Staphylococcus aureus

SCM Similarity Coefficients Matrix

SD± standard deviation

SDS Sodium Dodecyl Sulfate

Sec. seconds

SEM Scanning Electron Microscope

SH El GharbiaShobrababel

SLs similarity levels

Son El GharbiaSonbat

spp. species

SPR surface plasmon resonance

T Tanta

٧

TEM Transmission Electron

Microscope

TG El Gharbia Tanta

TiO₂ Titanium dioxide

UV-Vis Ultraviolet Visible

Spectroscopy

XRD X-Ray Diffraction Analysis

Zef El Gharbia Zefta

Zn Zinc

ZnO Zinc Oxide

 θ Theta

LIST of CONTENTS

		Subject	Pag		
1. Introduction.					
2. Review of Literature.					
	2.1	Nanotechnology	3		
	2.1.1 2.1.2	Nanobiotechnology Diagnostic has leave	3 5		
	2.1.2	Bionanotechnology Metal Oxide Nanoparticle	7		
	2.3	Toxic Effects of Metal Oxide Nanoparticles	11		
	2.3.1	Titanium Dioxide Nanoparticles	11		
	2.3.2	Zinc Oxide Nanoparticles	16 18		
	2.3.3 2.4	Silver Nanoparticles Nanocomposite	16 19		
	2.4.1	Nanocomposite Coatings	20		
	2.4.1.	Definition	20		
	2.4.1.	Classification	20		
	2.4.2	Classifying nanostructured materials	23		
	2.5	Removal of Pollutants by Nanoparticles	27		
	2.6	Removal processes of organic pollutants from water	30		
	2.7	Removal of Inorganic Pollutants	32		
	2.8	Removal of Pathogens	39		
	2.9	Using Nanomaterials for Wastewater Clean up	43		
	2.10	The feasibility study and the economic Consequences	47		
	2.11	Safety and Efficacy of Nano/Micro Materials	49		
3. Materials and Methods.					
3.1. Isolation, Purification and Reservation of Fungi From Different Soil Samples					

3.2.	Preparation of Stock Solution of Silver Nitrate, ZnO, TiO_2	53					
3.3.	Biosynthesis of Silver, ZnO, TiO ₂ Nanoparticles By Fungi Isolates						
3.3.1.	Extracellular Production of Silver, ZnO, TiO ₂ Nanoparticles (AgNPs, ZnONPs and TiO ₂ NPs)	54					
<i>3.3.2.</i>	NanoComposite						
3.4.	Method for Identification of the fungal isolate	55					
3.4.1.	Morphological Characterization						
3.4.2.	DNA Isolation, PCR Amplification, and Sequencing						
3.5.	Optimization of Substrate Concentration for Biosynthesis Of Nanoparticles						
3.6.	Characterization Of Nanoparticles and Nanocomposite						
3.6.1.	Ultraviolet-Visible(UV-Vis) Spectrophotometer Studies	57					
3.6.2.	Method of Fourier Transform Infrared Spectroscopy Analysis (FTIR)	58					
3.6.3.	Using Transmission Electron Microscope (TEM)	58					
3.64.	Utilizing X-Ray Diffraction Analysis (XRD)	58					
3.7.	Method of purification of the protein						
3.7.1.	Use of Electrophoresis of Native Protein (PAGE)	59					
3.7.2.	Method of Gel Analysis	60					
3.7.3. 3.8.	Protein Analysis Using MALDI-TOF Application studies of the produced nanoparticles	60 63					
3.8.1	Bacterial Culture	63					
3.8.2	Antibacterial Activity	64					
3.9.	Determination of the antitumor activity	64					
3.9.1	Method for Preparation of Some Buffers and Stains:	65					
3.9.2	Evaluation of The Antitumor effect:						
3.9.3.	Determination of Viable Cells:	67 68					
3.10.	Waste Water Application (Antimicrobial)	69					
3.10.1	Coating procedures	69					

3.10.2	Characterization of uncoated and coated stone with Nanoparticles	70
3.10.3	heavy metals removal determination	71
3.11.	Statistical Analysis	72
3.12	Composition of Media Used	73
4. Results.		
4.1	Screening of isolates for tolerance of Silver nitrate, Zinc oxide and Titanium dioxide.	78
4.2.	Biosynthesis silver nanoparticles	81
4.2.1	Effect of different metal concentration of silver nitrate	81
4.2.2	Screening of four isolates for their ability to synthesise silver nanoparticles	83
4.2.2.1	Production of pigment	83
4.2.2.2	The UV-Vis spectra	84
4.3.	Biosynthesis of ZnO nanoparticles	86
4.3.1	Effect of different metal concentration	86
4.3.2.	Screening of isolates ability to synthesis ZnO nanoparticles	88
4.3.2.1.	Production pigments	88
4.3.2.2	The UV-Vis spectra	89
4.4.	Biosynthesis of TiO ₂ nanoparticles	90
4.4.1	Effect of different metal concentration	90
4.4.2	Screening of isolates ability to synthesis TiO ₂ nanoparticles	92
4.4.2.1	Production pigments	92
4.4.2.2	The UV-Vis spectra	93
4.5.	Identification of selected isolates	95
4.5.1.	General morphological characterization of fungal growth on Potato Dextrose Agar	95
4.5.2.	Molecular characterization based on 18S rRNA gene	99

C	n	۸	77	ri	F.	۸	7	r	
•	•	/ 1	,	•	21		•		٦

4.6.	Characterization of Silver Nanoparticles	105
4.6.1.	Effect of substrate concentration on the synthetic silver nanoparticles	105
4.6.2.	FTIR spectrum of Aspergillus extract and silver nanoparticles of three strains	107
4.6.3	Transmission electron microscopic (TEM) image analysis	114
4.7.	Characterization of Zinc oxide nanoparticles	118
4.7.1.	Effect of substrate concentration on fungal growth on the synthetic ZnO nanoparticles	118
4.7.2.	FTIR spectrum of an aqueous solution and zinc oxide nanoparticles of three strains	120
4.7.3.	Transmission electron microscopic (TEM) image analysis ZnONps	126
4.8.	Characterization of TiO ₂ nanoparticles	130
4.8.1.	Effect of substrate concentration	130
4.8.2.	FTIR spectrum of TiO ₂ nanoparticles	132
4.8.3.	Transmission electron microscopic (TEM) image analysis ${\rm TiO}_2$	137
4.9.	XRD analysis	141
4.9.1.	Silver nanoparticle	141
4.9.2.	Zinc oxide nanoparticles	142
4.9.3.	Titanium dioxide nanoparticles	143
4.10.	Nanocomposite	144
4.10.1.	Composite 500µl silver- 500µl ZnO nanoparticles	144
4.10.2.	Composite 750µl silver- 250µl zinc oxide nanoparticles	148
4.10.3	Composite 750µl TiO ₂ - 250µl ZnO nanoparticles	150
4.10.4.	Transmission electron microscopic (TEM) image analysis of composite nanoparticles	152