

Alloimmunization in Egyptian Children with Sickle Cell Disease

A Thesis

Submitted For partial fulfillment of Master degree in pediatrics

By

Fatima Zahrra Abdelkarim Saed

M.B.B.Ch., Faculty of Medicine – Garyonis University, Benghazi, Libya (2012)

Supervised by

Prof. Mohsen Saleh Elalfy

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Assist. Prof. Fatma Soliman Elsayed Ebeid

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Mahmoud Adel Kenny

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Mohsen Saleh Elalfy**, Professor of Pediatrics, Faculty of Medicine - Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Fatma Soliman Elsayed Ebeid, Assistant Professor of Pediatrics, Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mahmoud Adel Kenny,** Lecturer of Pediatrics Faculty of Medicine-Ain

Shams University, for his great help and guidance.

Fatima Zahrra Abdelkarim Saed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	3
Review of Literature	
Sickle Cell Disease	4
Red Blood Cells Alloimmunization in Sickle Disease	
Patients and Methods	
Results	
Discussion	
Conclusion	58
Recommendations	59
Summary	60
References	61
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Anthropometric data of the studied	patients36
Table (2):	Descriptive data about the studied p	atients37
Table (3):	Laboratory Characteristics of the patients	
Table (4):	Transfusion history in the studied p	atients39
Table (5):	Chelation and Hydroxyurea historistudied patients	•
Table (6):	Complications of SCD in the studied	patients41
Table (7):	Antibody screening of the studied pa	atients42
Table (8):	Difference between patients with and those with negative antibody as regards clinical finding	screening
Table (9):	Comparison between patients with and those with negative antibodies as regard regarded type of sickle cell	screening
Table (10):	Difference between AB positive negative patients as regards laborat	
Table (11):	Difference between patients with po those with negative and AB regarding transfusion data	screening
Table (12):	Difference between patients with and those with negative and AB regard complication of SCD	screening
Table (13):	Red blood cell antigen freque Egyptian children with sickle cel (SCD)	l disease

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Normal RBCs and abnormal, sickled a	
Figure (2):	Extravascular destruction of RBCs	14
Figure (3):	Percentage of each sub types of the patients.	
Figure (4):	Antibody screening result in the group.	
Figure (5):	Type of sickle cell disease	45
Figure (6):	Percentage of age 1st transfusion studied patients	
Figure (7):	Percentage of transfusion index in the group.	4.0

List of Abbreviations

Abb.	Full term
ACS	. Acute chest syndrome
CBC	. Complete blood count
CNS	. Central nervous system
DHTR	. Delayed hemolytic transfusion reaction
GSH	. Glutathione
Hb	. Hemoglobin
HbC	. Hemoglobin C
HCV	. Hepatitis C virus
HIV	. Human immunodeficiency virus
NADPH	. Nicotinamide adenine dinucleotide phosphate
NF κB	. Nuclear factor κΒ
RBCs	. Red blood counts
SCA	. Sickle cell anemia
SCD	. Sickle cell disease
VOC's	. Vaso-occlusive crises

Introduction

Sickle cell disease (SCD) is a group of typically inherited red blood cell disorders resulting from presence of mutated form of Hemoglobin (Hb); HbS, People with SCD have abnormal Hb, called Hb S or sickle Hb, in their red blood cells (RBCs). The most common form of SCD is homozygous HbS disease, an autosomal recessive disorder. (Strouse, 2016)

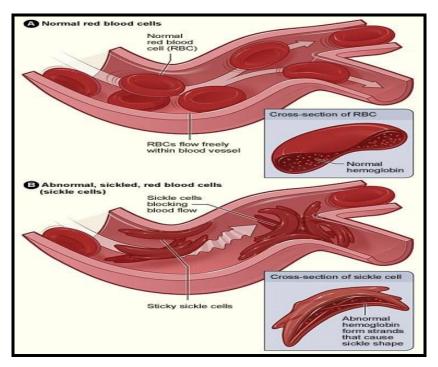
Electrophoretic abnormalities in sickle hemoglobin (HbS) had been identified and specified the term "molecular disease" in 1949. (Pauling and Itano, 1949) Sickle hemoglobin form stiff rods within the red cell, changing it into a sickle shape that are not flexible and can stick to vessel walls, causing a blockage that slows or stops the flow of blood and consequently oxygen can't reach nearby tissues. (Derebail et al., 2010)

Blood transfusion remains a cornerstone of treatment of patients with SCD. Despite improved patient outcomes with hydroxyurea administration, indications for chronic transfusions have increased in the last 10 years and are associated with considerable reduction in morbidity and mortality, most notably in preventing first stroke in children. (Yazdanbakhsh et al., 2012)

However, transfusions lead erythrocyte can to alloimmunization with serious complications for the patient. These antibodies are often directed against antigens expressed on RBCs of white persons, which represent the majority of donors in Western countries. Finding compatible units lacking those antigens can sometimes be difficult and identifying and characterizing the antibodies can be time-consuming and laborious, causing transfusion delays. Genetic as well as acquired patient-related factors are likely to influence the process of alloimmunization. (Lee et al., 2006)

The most serious consequence of alloimmunization in SCD patients is the risk of developing a delayed hemolytic transfusion reaction (DHTR), which can be life-threatening. In many cases of DHTR in SCD, the patient's hemoglobin level falls below the pre-transfusion level, suggesting that, in addition to hemolysis of the transfused RBCs, the patient's own RBCs are lysed, a condition known as hyperhemolysis. Additional transfusions may exacerbate the hemolysis and further worsen the degree of anemia. The destruction of the patient's own RBCs in DHTR of SCD is partly explained by the presence of autoantibodies because alloimmunization is known autoantibody production. However, to trigger DHTR/ hyperhemolysis cases have also been reported in the absence of detectable alloantibodies or autoantibodies. (Noizat-Pirenne et al., 2007)

AIM OF THE WORK


Our objective was to measure the frequency of the occurrence of the alloimmune markers in sickle cell disease and to investigate its predicators.

SICKLE CELL DISEASE

Sickle cell disease (SCD) is a group of typically inherited red blood cell disorders resulting from presence of mutated form of Hemoglobin (Hb); HbS. The most common form of SCD is homozygous HbS disease, an autosomal recessive disorder (*Strouse*, 2016). HbS is caused by a mutation in the β -globin gene in which the 17th nucleotide is changed from thymine to adenine and the sixth aminoacid in the β -globin chain becomes valine instead of glutamic acid (*Piel et al.*, 2013).

Human cells need a steady supply of oxygen to work well. Normally, Hb in red blood cells takes up oxygen in the lungs and carries it to all the tissues of the body. Red blood cells that contain normal Hb are concave disc shaped. This shape allows the cells to be flexible so that they can move through large and small blood vessels to deliver oxygen (*Shatat et al.*, *2013*).

Sickle Hb (HbS) is not like normal Hb. It can form stiff rods within the red cell, changing it into a crescent, or *sickle* shape. Sickle-shaped cells are not flexible and can stick to vessel walls, causing a blockage that slows or stops the flow of blood. When this happens, oxygen can't reach nearby tissues (*Derebail et al.*, 2010).

Figure (1): Normal RBCs and abnormal, sickled red blood cells. Picture (A) shows normal RBCs flowing freely in a blood vessel. The inset image shows a cross-section of a normal red blood cell with normal Hb. Picture (B) shows abnormal, sickled red blood cells blocking blood flow in a blood vessel. The inset image shows a cross-section of a sickle cell with abnormal (sickle) Hb forming abnormal stiff rods (*Gary and Gibbons*, 2016).

Pathophysiology:

SCD is a multisystem disease, associated with episodes of acute illness and progressive organ damage, and is one of the most common severe monogenic disorders worldwide. HbS is caused by a mutation in the β -globin gene this mutation produces a hydrophobic reason in the deoxygenated HbS tetramer that results in binding between $\beta 1$ and $\beta 2$ chains of two Hb molecules. This crystallization produces a polymer nucleus, which grows and fills the erythrocyte, disrupting its

architecture and flexibility and promoting cellular dehydration, with physical and oxidative cellular stress (*Tewari et al.*, 2015).

The rate and extent of HbS polymerisation is proportional to the extent and duration of Hb de-oxygenation, the intracellular HbS concentration, and the presence of fetal Hb in the erythrocyte, which effectively reduces the concentration of HbS. The main determinant of disease severity is the rate and extent of HbS polymerization, which is exemplified by co-inheritance of genetic factors that modulate the intracellular HbS or fetal Hb concentration, such as the protective effects of co-inherited α -thalassemia or hereditary persistence of fetal Hb (*Westerman et al.*, 2008).

The SCD manifestations are driven by two major pathophysiological processes: vaso-occlusion with ischaemia-reperfusion injury and haemolytic anaemia. Acute vaso-occlusive pain is thought to be caused by entrapment of erythrocytes and leucocytes in the microcirculation, causing vascular obstruction and tissue ischaemia. Although this process requires HbS polymerisation, the event that triggers the vascular obstruction by sickle erythrocytes is often inflammatory (*Mittal et al.*, 2010).

The second pathophysiological process in SCD is hemolytic anaemia, which is also driven by HbS polymerization. Hemolysis has long been known to cause anemia, fatigue, and cholelithiasis, but there is now evidence that it contributes to the

development of progressive vasculopathy. As patients with SCD age, they are at risk of vasculopathy, characterized by systemic and pulmonary hypertension, endothelial dysfunction, and proliferative changes in the intima and smooth muscle of blood vessels (*Bain et al.*, 2009).

Data from epidemiological studies suggest that several complications are associated with increased rates of hemolysis; cholelithiasis, cutaneous leg ulceration, priapism, and pulmonary hypertension are associated with low steady state Hb concentrations and an increased rate of intravascular hemolysis (*Ryan et al., 2010*).

An association between the development of pulmonary hypertension and the intensity of haemolytic anaemia was noted in three prospective screening studies of adults with SCD and in pediatric studies. Pulmonary hypertension has also been reported in other forms of chronic hereditary and acquired haemolytic anemia (*Ballas et al.*, 2009).

Therefore, patients with low Hb concentrations and high haemolytic rates seem to form a subphenotype of patients who are more likely to develop vasculopathy than are those with higher Hb concentrations who seem more prone to episodes of acute pain and, possibly, acute chest syndrome (*Voskaridou et al.*, 2010).

Although vaso-occlusion is important in all patients, the role of haemolysis as a pathophysiological mechanism in SCD is more controversial and is the focus of much research. An important disease mechanism involves the release of Hb into

the circulation during intravascular haemolysis. Free plasma Hb generates reactive oxygen species, such as the hydroxyl and superoxide radical, which is a potent scavenger of nitric oxide (Zimmerman et al., 2007).

Sickling process:

All complications of SCD can he traced to changes in the make-up of the RBC. Normal RBCs are smooth surfaced, enabling them to change their shape to flow through small blood vessels. Under certain conditions (i.e., acidosis, dehydration, infection, and low oxygen) RBC's containing HbS become rigid, elongated, and sickle shaped. Some RBCs sickle immediately, while others remain normal for hours before sickling. Most RBCs containing HbS can sickle and then unsickle. After repeated cycles of sickling and unsickling, the RBC's become irreversibly sickled (*Colombatti and Sainati*, 2016).

It is markedly accelerated when intracellular concentration of Hb S is increased. Sickle cells are short lived and can interact with endothelial cells, leukocytes, platelets, and other plasma components. It normally carries oxygen but begins to form semisolid aggregate structures once oxygen is unloaded to the tissues. These Hb S aggregates distort RBCs and decrease the cells' flexibility. Repeated deoxygenation cycles cause permanent RBCs damage (*Padayachee et al., 2012*). It was suggested that any condition that caused a "primary increase in the plasma viscosity" would delay passage of the erythrocytes through the capillaries, producing an increase in sickling and a "vicious cycle"