

Amelioration of salinity tolerance in sugar crops using plant growth promoting bacteria

Thesis Submitted for Partial Fulfillment of Master Degree in Microbiology

By

Doaa Ahmed Mohamed Ahmed

(B.Sc. Microbiology, 2008)

Supervisors

Dr. Sahar Tolba Mohamed

Dr. Essam A. M. Amer

Associate Professor of Microbiology
Microbiology Department
Faculty of Science
Ain Shams University

Senior Researcher
Breeding and Genetics Department
Sugar crops Research Institute (SCRI)
Agricultural Research Center

Dr. Mohamed Ibrahim Shehata

Associate Professor of Cytogenetics
Botany Department
Faculty of Science
Ain Shams University

Microbiology Department Faculty of Science Ain Shams University 2019

Student Name: Doaa Ahmed Mohamed Ahmed

Thesis title: Amelioration of salinity tolerance in sugar crops

using plant growth promoting bacteria

Degree : Master in Microbiology

Supervised by:

Dr. Sahar Tolba Mohamed

Associate Professor of Microbiology, Microbiology Department, Faculty of Science, Ain Shams University

Dr. Essam A. M. Amer

Senior Researcher, Breeding and Genetics Department Sugar crops Research Institute, Agricultural Research Center

Dr. Mohamed Ibrahim Shehata

Associate Professor of Cytogenetics, Botany Department, Faculty of Science, Ain Shams University

Microbiology Department
Faculty of Science
Ain Shams University
2019

Acknowledgement

First of all, great thanks and gratitude be to ALLAH, the most merciful for assisting and directing me the right way. All words, all feelings and all praise will not be enough to thank Allah.

I would like to express my deep and sincere gratitude to my lovely supervisor Dr. Sahar Tolba Mohamed, Associate Professor of Microbiology, Microbiology department, Faculty of Science, Ain Shams University for her sponsorship, for giving me the necessary scientific and incorporeal support, for constructive criticism and fruitful discussion. Her vision, sincerity and motivation have deeply inspired me in my scientific career and social life. It was a great privilege and honor to work and study under her guidance.

I am cordially indebted to my supervisor **Dr. Essam A. M. Amer**, Senior Researcher, Breeding and Genetics Department, Sugar crops Research Institute (SCRI), Agricultural Research Centre (ARC) for his help, encouragement, facilities offered by him throughout this work and his expert supervision.

I gratefully and sincerely thank my supervisor **Dr. Mohamed**Ibrahim Shehata, Associate Professor of cytogenetics, Botany
Department, Faculty of Science, Ain Shams University for his keen supervision, continuous support, advice, and valuable suggestions in all stages and steps of this thesis.

Thanks are also extended to **Dr. Hesham El-Shishtawy**, Senior Researcher, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC) for his kind efforts during the performing of protein extraction and SDS-PAGE technique.

Many thanks to all my colleagues in Research and Training Centre on Vector of Diseases, Microbiology Department and Chemistry Department for their help and cooperation.

A very special thanks and deepest love to my lovely husband Ahmed Fawzy for his love, support, patience and for providing sincerity and motivation in my life. I wish for you all the success, the good health and the happiness. An extreme gratitude to Allah for my children "Ha'ed and Rufaida".

My deep love and extreme gratitude to the most important people in my life and never being able to say thank you enough for everything they have done for me, to the reason why I am here and why I am able to make any success or achieve any goal in my life, to my father and my mother. I just want to make you happy and proud. Also a great love and gratitude to my sister (Dina).

A deep thank to Sugar crops Research Institute, Agricultural Research Center and all my Colleagues there for their assistance and support.

Finally, I would like to record my sincere thanks to all who directly and indirectly have lent their help to me.

Doaa Ahmed Mohamed Ahmed

Contents

Title	Page
List of tables	Ι
List of figures	III
List of Abbreviations	VI
Abstract	VIII
1.Introduction	1
2. Review of Literature	3
2.1 Salinity stress	3
2.2 Plant Growth Promoting Rhizobacteria (PGPR)	4
2.2.1Role of PGPR in plant growth enhancement	
2.2.1.1 Abiotic stress-induced tolerance in plants by	7
PGPR	
2.2.1.2 Role of PGPR in nutrients fixation	9
2.2.1.3 Effect of PGPR in production of growth regulators	
2.2.1.4 Role of PGPR in production of siderophores	12
2.2.1.5 Capability of some PGPR in production of	13
Volatile Organic Compounds	
2.2.1.6 Production of enzymes	13
2.2.2 Role of PGPR as Biofertilizers	14
2.3 Actinobacteria	15

2.4 Streptomycetes		
2.5 Sugar crops and sweeteners		
2.5.1 Importance of sugar crops and sweeteners	19	
2.5.2 Effect of salinity on sugarcane and Stevia	21	
2.5.3 Role of PGPR on alleviating salt stress on sugarcane	23	
and Stevia		
3. Materials and Methods	26	
3.1 Materials	26	
3.1.1 Chemicals and reagents	26	
3.1.2 Media, buffers and solutions	27	
3.1.2.1 Media	27	
3.1.2.2 Buffers and solutions	28	
3.1.3 Plant seeds		
3.2 Methods	34	
3.2.1 Characterization of halophilic actinobacteria	34	
3.2.1.1 Collection of soil samples	34	
3.2.1.2 Isolation, maintenance and purification of	34	
halophilic actinobacteria		
3.2.1.3 Characterization of halophilic actinobacterial	35	
isolates		
3.2.2 Morphological and microscopic characterization of	35	
selected isolates		
3.2.3 Molecular identification of selected isolates	36	

3.2.3.1 Amplification of 16S rRNA gene by polymerase	36
chain reaction (PCR)	
3.2.3.2 Sequencing of partial 16S rRNA gene	37
3.2.3.3 Sequence analysis and phylogenetic tree	37
construction	
3.2.4 Plant-based method	38
3.2.4.1 Pot experiment	38
3.2.4.2 Inoculation of sugarcane with halophilic	39
actinobacteria	
3.2.4.3 Inoculation of Stevia with halophilic	40
actinobacteria	
3.2.5 Physical analysis of precultivated soil	41
3.2.6 Chemical analysis of precultivated soil	41
3.2.7 Measuring plant growth parameters	41
3.2.8 Analysis of actinobacteria potential on salt-	42
stressed Stevia plantlets	
3.2.8.1 Extraction of Total Cellular Proteins (TCPs)	42
from actinobacterial isolates	
3.2.8.2 Extraction of Total Cellular Proteins (TCPs)	42
from Stevia plant	
3.2.8.3 Detection of protein concentration	43
3.2.8.4 Total Soluble protein analysis by SDS-PAGE	43
technique	

3.2.9 Histidine Deoxychlate (HD)-Native PAGE	45
3.2.10 Mass spectrometric analysis of selected Total Soluble Cellular Polypeptides (TCPs) of	46
actinobacterial isolates 3.2.11 Statistical analysis	47
4. Results	48
4.1 Physical and chemical analyses of precultivated soil	48
4.2 Isolation of halophilic actinobacteria	48
4.3 Screening of halophilic actinobacteria	49
4.4 Identification of the halophilic actinobacterial	51
isolates	
4.4.1 Morphological and microscopic identification	51
4.4.2 Molecular identification and phylogenetic analysis	52
4.5 Applications of the halophilic actinobacterial isolates to alleviate stress effect on sugarcane setts germination and Stevia plantlets growth	54
4.5.1 Applications on salt-stressed sugarcane setts germination	54
4.5.2 Applications on salt-stressed Stevia plantlets growth	56
4.6 Effect of halophilic actinobacterial isolates on sugarcane and Stevia growth parameters under saline condition	58
4.6.1 Effect of halophilic actinobacterial isolates on sugarcane growth parameters	58

4.6.2 Effect of halophilic actinobacterial isolates on Stevia	62	
growth parameters		
4.7 Total Cellular Proteins (TCP) analyses	71	
4.7.1 Bacterial TCPs electrophoresis by SDS-PAGE	71	
technique		
4.7.2 Stevia TCPs electrophoresis by SDS-PAGE	73	
4.7.3 Analysis of protein profile of halophilic	76	
Streptomyces sp. as revealed by HDN-PAGE		
40.04		
4.8 Mass spectrometric analysis of selected TCPs of	77	
halophilic <i>Streptomyces</i> sp. after SDS-PAGE		
5. Discussion	79	
5.1 Characterization and Identification of PGPR	79	
Streptomyces halophilic actinobacteria		
5.2 Alleviation of salt stress by application of the	80	
identified PGPR Streptomyces sp.		
5.3 Ameliorative impact of PGPR Streptomyces sp. on the	84	
large subunit expression of RuBisCO enzyme complex		
5.4 Identification of EF-TU in the identified halophilic	87	
PGPR Streptomyces sp.		
6. Conclusion	90	
7. Recommendations	91	
8. English Summary	92	
9. References	96	

Contents

10. Appendix	129
Arabic Summary	

List of Tables

Table	Title	Page
No.		No.
1	Physical and chemical analyses of the soil used for pot experiment	48
2	Number of isolated halophilic actinobacteria from salty soil rhizosphere	49
3	Effect of different salt concentrations on mycelial growth of the isolated actinobacteria	50
4	Effect of halophilic actinobacteria isolates on sugarcane setts germination under salt stress	55
5	Effect of halophilic actinobacteria isolates on Stevia plantlets growth under salt stress	57
6	Effect of halophilic isolates on sugarcane growth parameters under NaCl treatments (after 49 days-old)	60
7	Effect of halophilic isolates on Stevia shoot height under different NaCl treatments (after 42 days-old)	64
8	Calculation of Stevia shoot height difference and growth rate percentage (after 42days old)	65

9	Effect of halophilic isolates on Stevia leaf number under different NaCl treatments (after 42 days-old)	68
10	Calculation of Stevia leaf number difference and growth rate percentage	69
11	Analysis of the selected <i>Streptomyces</i> sp. polypeptide by Mass Spectrometry	78

List of figures

Figure	Title	Page
No.		No.
1	Effect of different salt concentrations on the growth of isolated actinobacteria (A) Streptomyces variabilis, (B) Streptomyces fradiae.	50
2	Selected actinobacteria isolated on salted starch nitrate agar medium (A) <i>St. variabilis</i> , (A-I) Aerial mycelium, (A-II) Substrate mycelium, (A-III) Scanning Electron microscopy (SEM), (B) <i>St. fradiae</i> , (B-I) aerial mycelium, (B-II) Substrate mycelium, (B-III) Scanning Electron microscopy (SEM).	51
3	Neighbour joining phylogenetic tree of partial 16S rRNA sequence of isolates 4NC and 8PK.	53
4	Effect of halophilic actinobacterial isolates on sugarcane shoot height (A) Shoot height and (B) Shoot height growth rate % under different NaCl treatments (after 49-days old).	61
5	Effect of halophilic actinobacterial isolates on sugarcane leaf number (A) Leaf number and (B) Leaf number growth rate % under different NaCl treatments (after 49-days old).	61
6	Efffect of inoculation of sugarcane with PGPR. (A) <i>S. variabilis</i> , (A-I) non-saline condition, (A-II) saline condition, (B) <i>S. fradiae</i> , (B-I) non-saline condition, (B-II)	62