

Histological and Ultrastructural studies on the effect of certain plant extracts on the digestive and hermaphrodite glands of the Egyptian giant garden slug, *Limax maximus*

THESIS SUBMITTED FOR THE DEGREE OF MASTER'S IN SCIENCE TEACHER'S PREPARATION (Zoology)

By

Ustina Nasser Tawfeek Habib

B. Sc. and Education (2013)

General Diploma for Teacher Preparation in Science (Zoology) 2014 Special Diploma for Teacher Preparation in Science (Zoology) 2015

Supervised By

Prof. Dr. Ahmed Abdel-Salam Abdel-Haleem

Professor of Invertebrates, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University.

Dr. Omaima Mohamed Mustafa

Assistant Professor of Invertebrates, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University.

Dr. Eman Hassan Ismail Abdel-Razik

Assistant Professor of Entomology, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University.

To

Biological and Geological Sciences Department, Faculty of Education, Ain Shams University

2019

APPROVAL SHEET

NAME: Ustina Nasser Tawfeek Habib

TITLE: Histological and Ultrastructural studies on the effect of certain plant extracts on the digestive and hermaphrodite glands of the Egyptian giant garden slug, Limax maximus

SCIENTIFIC DEGREE: Master in Zoology, 2019.

Approved

Supervisors:

Prof. Dr. Ahmed Abdel-Salam Abdel-Haleem.

Professor of Invertebrates, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University.

Dr. Omaima Mohamed Mustafa.

Assistant Professor of Invertebrates, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University.

Dr. Eman Hassan Ismail Abdel-Razik

Assistant Professor of Entomology, Biological and Geological Sciences Department, Faculty of Education, Ain Shams University.

AKCNOLOGMENT

First of all, thanks due to **my GOD** who helped me and enabled me to overcome all the problems, which faced me through the work.

I wish to express my deep grateful thanks to **Prof. Dr. Ahmed Abdel-Salam Abdel-Haleem**, Professor of Invertebrates, for suggesting and planning this point of current research, active supervision, constructive critical reading of the manuscript, follow up and helpful advice on the practical part, reviewing the work, strengthening the whole work, kind support and encouragement.

Grateful thanks are due to **Dr. Omaima Mohamed Mustafa**, Assistant Professor of Invertebrates, for participation in suggesting this point, follow up of practical work, active cosupervision, reviewing and correcting the manuscript, continuous encouragement and providing useful advice.

Deep many thanks are due to **Dr. Eman Hassan Ismail Abdel Razik,** Assistant Professor of Zoology for reading and correcting the manuscript and her continuous encouragement.

Many thanks are also afforded to **Prof. Dr. Mohamed Hamed Abdelaal**, Head of Biological and Geological Sciences Department, Faculty of Education, Ain Shams University for his support and providing valuable facilities for this work to complete.

Also, thanks to a central laboratory, Faculty of Education, Ain Shams University and regional Center of Mycology and Biotechnology (RCMB), Al-Azhar University.

ABSTRACT

The Egyptian giant garden slug, *Limax maximus* Linnaeus, 1758 (Family: Limacidae: Pulmonata: Gastropoda: Mollusca) had been manually collected from of garden in Faculty of Education, Ain Shams University.

The main aspects of the present work can be summarized as follows:

- **♣** Study of morphological features of *L. maximus*.
- **♣** Study of the internal anatomical organs of *L. maximus*.
- **♣** Susceptibility of *L. maximus* to LC₅₀ and LC₉₀ of two extracted botanical molluscicids, namely thymol and caffeine.
- → Histological investigations of untreated digestive and hermaphrodite (ovotestis) glands of *L. maximus*.
- \blacksquare Study of histological altrnations in the two glands due to treating of *L. maximus* with LC₅₀ and LC₉₀ of thymol and caffeine, as poison baits.
- **♣** Cytological investigations, using TEM, of untreated digestive and hermaphrodite glands of *L. maximus*.
- \bot Cytological altrnations in the two glands of *L. maximus* due to treating with LC₅₀ and LC₉₀ of thymol and caffeine.

LC₅₀ of treated *L. maximus* with thymol and caffeine are 269.77 ppm and 652.52 ppm respectively, whereas LC₉₀ are 362.79 pmm and 873.53 ppm respectively, and could be arranged based on their toxic effects in the order: thymol>caffeine. Histological and ultrastructure investigations of digestive and hermaphrodite glands of *L. maximus* with LC₉₀ of thymol and caffeine showed severe histological changes and ultrastructure abnormalities, including severe damage in architecture of digestive gland-cells and hermaphrodite gland. These results may be of great value in the field to control the target *L. maximus*-slug, as safe and economic molluscicide, which no harm upon ecosystems, instead of using chemical pesticides that could pollute the environment.

KEY WORDS

- Pulmonata.
- Stylommatophora
- Limacidae.
- Egyptian terrestrial slugs.
- Limax maximus.
- Morphology.
- Digestive gland.
- Hermaphrodite gland (ovotestis).
- Histology.
- Cytology.
- Fine structure (or ultrastructure).
- TEM
- Thymol.
- Caffeine.

TABLE OF CONTENTS

TITLE	PAGES
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE	
1. Biological studies:	4
1-1: Disrtibution of the slug <i>Limax maximus</i> .	
1-2: Morphological and anatomical aspects.	4
1-3: Plant molluscicidal activity.	4
2. Histological studies:	6
2-1: Digestive gland.	U
2-2: Hermaphrodite gland (Ovotestis).	7
3. Ultrastructural studies:	8
3-1: Digestive gland.	0
3-2: Hermaphrodite gland.	9
4. Economic and medical importances.	10
MATERIAL AND METHODS	12
1. Biological studies:	12
1-1: Rearing of <i>Limax maximus</i> .	12
1-2: Morphology of <i>L. maximus</i> .	12
1-3: Anatomy of <i>L. maximus</i> .	12
2. Treating of <i>L. maximus</i> with thymol and caffeine compounds:	14
2-1: Thymol compound.	14
2-2: Caffeine compound.	14
2-3: Determenation of LC ₅₀ and LC ₉₀ :	15
2-4: Slug groups.	15
3. Histological technique.	17
4. Ultrastructural technique.	17
RESULTS:	
1. Biological studies:	19
1-1: Phenotypic properties.	ļ
191-2: Anatomical aspects.	20

i

TABLE OF CONTENTS

1-3: Susceptibility of <i>L. maximus</i> to thymol and caffeine	23
compounds:	23
1-3-1: Thymol compound.	23
1-3-2: Caffeine compound.	23
2. Histological investigations:	27
2-1: Digestive gland:	21
2-1-1: Untreated slugs:	27
2-1-1: Digestive cell.	27
2-1-1-2: Secretory cell.	28
2-1-2: Treated slugs:	31
2-1-2-1: Thymol effects:	31
2-1-2-1-1: Thymol-treated slugs with LC _{50.}	31
2-1-2-1-2: Thymol-treated slugs with LC _{90.}	31
2-1-2-2: Caffeine effects:	36
2-1-2-2-1: Caffeine-treated slugs with LC _{50.}	36
2-1-2-2: Caffeine-treated slugs with LC _{90.}	36
2-2: Hermaphrodite gland (Ovotestis):	41
2-2-1: Untreated slugs:	41
2-2-1-1: spermatogenesis.	41
2-2-1-2: Oogenesis.	42
2-2-2: Treated slugs.	46
2-2-2-1: Thymol effects:	46
2-2-2-1-1: Thymol-treated slugs with LC ₅₀ .	46
2-2-2-1-2: Thymol-treated slugs with LC _{90.}	46
2-2-2: Caffeine effects.	50
2-2-2-1: Caffeine-treated slugs with LC ₅₀ .	50
2-2-2-2: Caffeine-treated slugs with LC ₉₀ .	50
3. Ultrastructural studies:	56
3-1: Digestive gland:	30
3-1-1: Untreated slugs:	56
3-1-1: Digestive cell.	56
3-1-1-2: Secretory cell.	57
3-1-2: Treated slugs:	61

TABLE OF CONTENTS

3-1-2-1: Thymol effects:	61
3-1-2-1-1: Thymol-treated slugs with LC _{50.}	61
3-1-2-1-2: Thymol-treated slugs with LC _{90.}	61
3-1-2-2: Caffeine effects:	72
3-1-2-2-1: Caffeine-treated slugs with LC ₅₀ .	72
3-1-2-2: Caffeine-treated slugs with LC ₉₀ .	72
3-2: Hermaphrodite gland:	72
3-2-1: Untreated slugs:	81
3-2-1-1: Spermatogenesis:	81
3-2-1-1: Spermatogonia.	81
3-2-1-1-2: Primary spermatocytes.	82
3-2-1-1-3: Secondary spermatocytes.	82
3-2-1-1-4: Spermatids.	82
3-2-1-1-5: Spermatozoa.	83
3-2-1-1-6: Sertoli cells.	83
3-2-1-2: oogenesis	84
3-2-1: Treated slugs:	98
3-2-1-1: Thymol effects:	98
3-2-2-1-1: Thymol-treated slugs with LC ₅₀ .	98
3-2-2-1-2: Thymol-treated slugs with LC _{90.}	98
3-2-1-2: Caffeine effects:	108
3-2-2-1: Caffeine-treated slugs with LC _{50.}	108
3-2-2-2: Caffeine-treated slugs with LC _{90.}	108
DISCUSSION	129
SUMMARY AND CONCLUSION	137
REFERENCES	142
ARARIC SUMMARV	1

List of Abbreviations

Ac	Acinus of ovotestis
AbSz	Abnormal spermatozoa
Af	Axial filament complex
Al	Ancel's layer
An	Abnormal nucleus
Ax	Axoneme
AgSz	Aggregated spermatozoa
BM	Basement membrane
CdAc	Completely degeneration of acinus
CF	Central fibers
CS	Calcium spherules
CT	Connective tissue
СТа	Cysts of numerous toxic agents
DC	Digestive cell
DCT	Degenerated connective tissue
DgECM	Degenerated extracellular matrix
Dg	Degenerated
DgM	Degenerated mitochondria
DMo	Degeneration of mature oocyte
Dn	Degenerated nucleus
DgRER	Degenerated-rough endoplasmic
DgKLK	reticulum
EP	End piece
FS	Fibrous sheath
GEC	Germinal epithelium cells
gl	Glycogen
Н	Head
Н	head
L	Lumen
LD	Lipid droplets
Ly	Lysosomes
M	Mitochondria

MD	Mitochondrial derivative
MO	Mature oocyte
MP	Middle piece
Mv	Microvilli
N	Nucleus
NDC	Necrosis of digestive cells
NE	Nuclear envelope
NP	Nuclear pores
Nu	Nucleolus
ODF	Outer dense fibers
Oo	Oogonia
PdAc	Partially degenerated of acinus
Po	Primary oocytes
PS	Primary spermatocyte
RER	Rough endoplasmic reticulum
RMv	Rupture of microvilli
SC	Secretory cell
Sd	Spermatids
SeC	Sertoli cell
Sg	Spermatogonia
SeN	Sertoli nucleus
So	Secondary oocyte
Sp	Spermatid
SS	secondary spermatocytes
Sz	spermatozoa
T	Tail
Ta	Toxic agent
V	Vacuoles
WS	Wide space

LIST OF FIGURES

Figures	Titles	Pages
Fig. 1:	A photograph of rearing of <i>L. maximus</i> in transparent plastic box.	13
Fig. 2:	(a) Photograph of morphology of <i>L. maximus</i> (b) diagrammatic drawing of phenotypic features of it.	20
Fig. 3:	(a) photograph of dissected untreated L. maximus (b) diagrammatic drawing of internal organs of it.	22
Fig. 4:	Regression mortality line of the treated slug L. maximus with different concentrations of thymol.	24
Fig. 5:	Regression mortality line of the treated slug L. maximus with different concentrations of caffeine.	25
Fig. 6:	Comparison between LC50 and LC90 of the botanical thymol and caffeine against L. maximus.	26
Fig. 7:	Displaying enlarged acini of digestive gland and its digestive cell (DC), secretory cell (SC) and lumen (L). $(X = 400)$	30
Fig. 8:	Showing digestive cells, DC=digestive cell and L=lumen. (X = 1000)	30
Fig. 9:	Illustrating the secretory cell (SC), beside digestive cell (DC). $(X = 1000)$	30
Fig. 10:	Showing enlarged acini of untreated digestive gland and its digestive cell (DC), secretory cell (SC) and lumen (L). $(X = 400)$	33
Fig. 11:	Displaying enlarged treated digestive acinus revealing vacuoles (V) inside digestive cells (DC), degenerated cells (Dg) beside some toxic agent (Ta). (X = 400)	33
Fig. 12:	Showing digestive cells (DC), vacuoles (V) and degenerated cells (Dg). $(X = 1000)$	33
Fig. 13:	Illustrating enlarged treated secretory cells (SC) displaying internal vacuoles (V), abnormal irregular	33

	nucleus (AbN), degenerated digestive cells (Dg) and	
	some toxic agents (Ta). $(X = 1000)$	
Fig. 14:	Showing enlarged acini of untreated digestive gland	
	and its digestive cell (DC), secretory cell (SC) and	35
	lumen (L). $(X = 400)$	
Fig. 15:	Displaying enlarged treated digestive acinus revealing	
	vacuoles (V), degenerated digestive cells (DC),	35
	secretory cells (SC) and its abnormal star-shaped	33
	nucleus (Asn). $(X = 400)$	
Fig. 16:	Showing enlarged treated degenerated digestive cells	35
	(Dg) and vacuoles (V). $(X = 1000)$	33
Fig. 17:	Illustrating enlarged treated secretory cells (SC)	
	displaying vacuoles (V) and abnormal star-shaped	35
	nucleus (Asn). $(X = 1000)$	
Fig. 18:	Showing enlarged acini of untreated-digestive gland	
	and its digestive cell (DC), secretory cell (SC) and	38
	lumen (L). $(X = 400)$	
Fig. 19:	Displaying an enlarged treated digestive acinus	
	revealing digestive cells (DC), secretory cells (SC) and	
	scattered toxic agent (Ta) in the lumen (L), Some	38
	departs of digestive and secretory cells (arrow) and	
	connective tissue (CT). $(X = 1000)$	
Fig. 20:	Showing enlarged treated digestive cells (DC)	
	showing vacuoles (V), degeneration (Dg), Some	38
	departs of digestive and secretory cells (arrow) and	20
—	scattered toxic agent (Ta) in lumen (L). $(X = 1000)$	
Fig. 21:	Illustrating enlarged treated secretory cells (SC)	
	displaying internal vacuoles (V), abnormal nucleus	38
	(AN), nucleus (N), toxic agent (Ta) and lumen (L). (X	20
T1 00	= 1000)	
Fig. 22:	Showing enlarged acini of untreated-digestive gland	4.0
	and its digestive cell (DC), secretory cell (SC) and	40
	lumen (L). $(X = 400)$	

Fig. 23:	Displaying enlarged treated digestive acinus revealing	
	some digestive acini decrease in size, digestive cells	
	(DC), secretory cells (SC), degenerated connective	40
	tissue surrounding the acinus (arrow) and toxic agent	
	(Ta) in secretory cells and lumen (L). $(X = 100)$	
Fig. 24:	Showing enlarged treated digestive cells (DC)	40
	showing vacuoles (V). lumen (L). $(X = 1000)$	70
Fig. 25:	Illustrating enlarged treated secretory cells (Sc)	
	displaying internal vacuoles (V), abnormal nucleus	40
	(An) and toxic agent (Ta). $(X = 1000)$	
Fig. 26:	Displaying enlarged ovotestis acinus (Ac), germinal	
	epithelial cell (GEC), Sertoli cell (SeC), primary and	
	secondary spermatocytes (PS&SS), spermatids (Sd)	45
	and spermatozoa (Sz) consist of head (H) and tail (T).	
	(X = 1000)	
Fig. 27:	Showing mature oocyte (MO) and nucleus (N). $(X = $	45
	400)	T J
Fig. 28:	Illustrating oogonia (Oo), primary oocytes (Po) and	45
	secondary oocytes (So). $(X = 400)$	73
Fig. 29:	Showing ovotestis acinus (Ac) of normal (untreated)	48
	containing spermatozoa (Sz) ($X = 400$).	10
Fig. 30:	Displaying treated enlarged part of acini, each acinus	
	containing spermatozoa (Sz) and completely	48
	degeneration of mature oocyte (DMO) ($X = 400$).	
Fig. 31:	Showing reduction in the spermatogenesis spermatids	48
	(Sd) and abnormal spermatozoa (AbSz) ($X = 1000$).	
Fig. 32:	Illustrating treated spermatozoa (Sz), lacking head of	
	spermatozoa (Bolts), aggregated spermatozoa (AgSz)	48
	and partially degeneration of mature oocyte (DMO) (X	70
	=400).	
Fig. 33:	Showing ovotestis acinus (Ac) of normal (untreated)	51
	containing spermatozoa (Sz) ($X = 400$).	<i>J</i> 1
Fig. 34:	Displaying treated spermatozoa (Sz), completely	51
	degeneration of acini (arrow), ancel's layer (AL) wide	<i>J</i> 1

	space between acini (WS) and reduction in the spermatogenesis and spermatozoa (Sz). $(X = 40)$	
Fig. 35:	Showing enlarged the previous figure showing	
11g. 33.	reduced in the spermatogenesis, oogenesis and	
	spermatozoa (Sz), partially and completely	
	degeneration of acinus (PdAc & CdAc) and	51
	degeneration of the connective tissue (dCT) between	
	the acinus (Ac). $(X = 100)$	
Fig. 36:	Illustrating space between acini (arrow), degenerated	
	connective tissue (dCT) and reduction in the	<i>C</i> 1
	spermatogenesis and abnormal spermatozoa (AbSz)	51
	(X = 400).	
Fig. 37:	Showing ovotestis acinus (Ac) of normal (untreated)	
	containing gametogenesis and spermatozoa (Sz) (X =	53
	100).	
Fig. 38:	Displaying large space between treated acini (Ac) and	
	degenerated connective tissue cell (dCT). Reduction in	53
	the number of gametogenesis $(X = 400)$.	
Fig. 39:	Showing more enlarged portion of treated ovotestis	
	acini (Ac) in irregular shape. the development stages	
	of oogenesis and spermatogenesis are absence in some	53
	acini (arrows), vacuoles (V) and the connective tissue	
	cells are degenerated (dCT). $(X = 400)$.	
Fig. 40:	Illustrating treated mature oocyte. notice degeneration	
	mature oocyte (dMO). Reduction in the number of	53
T1 11	gametocytes ($X = 1000$).	
Fig. 41:	Showing ovotestis acinus (Ac) of untreated containing	
	primary and secondary spermatocyte (PS&SS) and	55
	spermatozoa (Sz) surrounded by germinal epithelial	-
T' 40	cell (GEC). $(X = 100)$	
Fig. 42:	Displaying large space between treated acini and	<i></i>
	degenerated connective tissue cell (dCt), reduction in	55
	the number of gametogenesis and partially and	

	completely degeneration of acini (PdAc & CdAc). (X	
Fig. 43:	= 100) Showing more enlarged portion of treated ovotestis acini in irregular shape. the development stages of oogenesis and spermatogenesis are absence in some acini (arrows), the connective tissue cells (dCT) are degenerated (X = 400).	55
Fig. 44:	Illustrating treated mature oocyte (MO) with irregular outline. degenerated nucleus of mature oocyte with abnormal shape (AN), mature oocytes detached from their follicular membrane, follicular cell are degenerated and reduction in the number of gametogenesis and degeneration of connective tissue between acini (dCT) ($X = 400$).	55
Fig. 45:	Photo Electron Micrograph (PEM) of digestive cell of untreated Limax maximus [digestive cell. (L=lumen, Mv=microvilli, that are above enlarged] (X=4000).	58
Fig. 46:	PEM of the digestive cells of untreated L. maximus [the digestive cell-nucleus (N), rough endoplasmic reticulum (RER) near the nucleus and mitochondria (M)] (X=6000).	59
Fig. 47:	PEM of the digestive acinus of untreated L. maximus [the peritubular connective cell-nucleus (N)]. (X=15000).	60
Fig. 48:	PEM of the digestive gland of treated L. maximus with LC50 of thymol for 48 hrs. [nucleus (N), nucleolus (Nu), vacuoles (V) and degenerated cell (Dg)] (X = 4000).	63
Fig. 49:	PEM of the digestive gland of treated L. maximus with LC50 of thymol for 48 hrs. [nucleus (N), nucleolus (Nu), vacuoles (V), degenerated-rough endoplasmic reticulum (DgRER) and degenerated mitochondria (DgM)] (X = 10000).	64