Relation of Gut Lactobacillus Acidophilus and Atherosclerosis in type 2 diabetic patients with and without atherosclerosis

AThesis

Submitted for Partial Fulfillment of M.D. degree in Internal Medicine

Presented By

Mark Nabil Bios

Master degree in Internal Medicine

Under Supervision of

Dr. Salwa Seddik Hosny

Professor of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Dr. Rania Sayed Abd El Baky

Professor of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Dr. Yara Mohamed Eid

Professor of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Dr. Nagwa Roushdy Mohamed

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Dr. Rana Hashem Ibrahim

Lecturer of Internal Medicine & Endocrinology Faculty of Medicine Ain-Shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgment

First and foremost, I feel always indebted to ALAH, the Most Kind and Most Merciful.

I was honored to work under the supervision of **Dr. Salva Seddik Hosny**, Professor of Internal Medicine & Endocrinology, Faculty
of Medicine Ain-Shams University, for her vital assistance and
unlimited co-operation. She had generously offered me much of her time,
precious advice and variable guidance throughout this work.

I wish to express my deepest thanks and gratitude to **Dr. Rania**Sayed Abd & Baky, Professor of Internal Medicine & Endocrinology,
Faculty of Medicine Ain-Shams University, for her close supervision,
generous efforts and constant encouragement. She had scarified a lot of
her busy time to teach me and revise over step of this thesis.

I would like to express my sincere thanks to **Dr. Ufara Mohamed Eid,** Professor of Internal Medicine & Endocrinology, Faculty of Medicine Ain-Shams University, who kindly offered me much of his time, experience, valuable help and effort in the immunohistochemical aspect

I would like to express my sincere thanks to **Dr. Magwa Roushdy Mohamed**, Lecturer of Internal Medicine & Endocrinology, Faculty of Medicine Ain-Shams University, who kindly offered me much of his time, experience, valuable help and effort in the immunohistochemical aspect.

I would like to express my sincere thanks to **Dr. Rana Washem Ibrahim**, Lecturer of Internal Medicine & Endocrinology, and Faculty of Medicine Ain-Shams University, who kindly offered me much of his time, experience, valuable help and effort in the immunohistochemical aspect.

I wish to express my deepest thanks and gratitude to radiology department Ain shams university hospital for providing carotid duplex for patient involved in our study, which provided us with valuable data for our study.

Mark Nabil Bios

List of Contents

Title	Page No.
List of Tables	
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Diabetes and Atherosclerosis	4
Microbiota	27
• Microbiota Diabetes, obesity and atherosclero	osis52
Subject and Methods	68
Results	83
Discussion	100
Summary and Conclusion	109
Recommendation	111
References	112
Arabic Summary	_

List of Tables

Table No	o. Title	Page No.
Table (1):	Showing Diagnostic Criteria for Diabetes I	Mellitus6
Table (2):	Summarizing different diabetic complication	ons6
Table (3):	Shows recommendations of statins an	d combination
	treatment in adults with Diabetes	13
Table (4):	Shows recent Recommendations for card	liovascular risk
	factor management in patients with diabete	es14
Table (5):	Shows Fontaine's clinical classification	for grading of
	PAD	
Table (6):	Showing summery of treatment of PAD in	diabetics 26
Table (7):	Showing classification of bacteria pres	
	intestine	28
Table (8):	Shows the expected beneficial effects of C	GUT microbiota
	in clinical practice	40
Table (9):	Shows microbiota species increased in t	type 2 diabetes
	mellitus patients	
Table (10):	Shows dietary sources rich in TMAO or its	metabolites 64
Table (11):	Comparison between group I and grou	p II regarding
	demographic data and clinical data	89
Table (12):	Comparison between group I and grou	p II regarding
	laboratory results	90
Table (13):	Comparison between PCR cut-off thresh	old of the two
	studied groups	91
Table (14):	Correlation between PCR cut-off threshol	d and the other
	studied parameters in all patients, group I a	and group II91
Table (15):	Relation between PCR cut-off threshold	and the other
	studied parameters in all patients	92
Table (16):	Receiver operating characteristic curve (
	cut-off threshold as a predictor for atheros	clerosis in type
	II diabetic patients.	93

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Pathophysiology of diabetes induced vasc	ular injury 9
Figure (2):	Shows Age-adjusted cardiovascular d	, ,
	mortality rates among Framingham	
T ! (2)	participants with and without DM by sex	•
Figure (3):	Temporal aspects of microbiota estal	
	maintenance and factors influence	
Figure (4).	composition	
Figure (4):	composition and density at different in	
	human gastrointestinal tract	
Figure (5):	Phylogenic tree analysis of intestinal micr	
Figure (6):	Hemostatic relationship between hum	
8 - (-)-	intestinal microbiota	
Figure (7):	Shows an overview of carbohydrates i	
	anaerobic bacteria in large intestine,	
	important short chain fatty acids (SCFA).	
Figure (8):	The balance between microbiota commun	•
	its contribution to health and disease, the	
	represents the functions of the overall con	•
Figure (0).	than one species	
Figure (9): Figure (10):	Shows potential protective action of probiot Shows different effects of dysbiosis	
Figure (10):	Association of intestinal microbiota	
riguit (II).	outside of the gastrointestinal tract	
Figure (12):	Show important short chain fatty acids	
8 , ,	<u> </u>	55
Figure (13):	Showing relation of altered GUT m	nicrobiota and
	development of atherosclerosis	61
Figure (14):	Shows role of Gut microbiota in pa	
	hypertension, atherosclerosis, and arterial	
Figure (15):	Showing Michigan neuropathy screeni	_
	questionnaire A higher score (out of a m	
	points) indicates more neuropathic s	• •
	requires brief neurological assessment	69

List of Figures (Cont.)

Fig. No.	Title	Page No.
Figure (16):	Showing Insulin ELISA standard curve	
Figure (17):	Shows curve for isolation of positive sto	-
- 1 (10)	L. acidophilus ATCC 4356	
Figure (18):	Shows significant difference between	
Figure (10).	regarding anti-diabetic medications (P-val	,
Figure (19):	Shows significant difference between regarding the 2 hrs PP blood sugar (P-val	O 1
Figure (20):	Shows significant difference between	
Figure (20).	regarding glycated hemoglobin (HBA	O 1
	0.023)	
Figure (21):	Shows significant difference between	
9	regarding intimal media thickness (IM	• 1
	0.001)	
Figure (22):	Shows no significant difference between	n positive and
	negative cases for PCR for Lactobacillus	acidophilus in
	two groups (P-value: 0.578)	
Figure (23):	Shows significant difference between	
	regarding PCR cut off threshold (P-value:	,
Figure (24):	Showing positive Correlation between	
	threshold and 2 hours post prandial bloo	
Figure (25).	PP) in all cases (P-value: 0.031) Showing positive Correlation between	
Figure (25):	threshold and HBA ₁ C in all cases (P-value	
Figure (26):	Shows positive correlation between	· · · · · · · · · · · · · · · · · · ·
1 igure (20).	threshold and hours post prandial blood su	
	in group (I) (P-value: 0.05)	
Figure (27):	Showing positive Correlation between	
	threshold and HBA ₁ C In-group (I) (P-value	ie: 0.049)98
Figure (28):	Showing positive correlation between	
	threshold and intimal media thickness (l	
	(I) (P-value: 0.045).	99

List of Abbreviations

Abb.	b. Full term		
2hr PPTwo hours post prandial plasma glucose			
ABI	BIankle-brachial index		
ADA	American Diabetes Association		
AGEs	Advanced glycation end products		
AHA	American Heart Association		
AHA/ACC	. American Heart Association and American College of Cardiology		
Angptl4	Angiopoietin-like 4		
ApoB	Apolipoprotein B		
CAD	Coronary artery disease		
CDC	Center for Disease Control and Prevention		
CVS	Cerebrovascular stroke		
DM	Diabetes melitis		
ESC/EAS	European Society of Cardiology and European Atherosclerosis Society.		
FFAs Free fatty acids.			
FIAFFasting-induced adipose factor			
FMO3 Flavin-containing monooxygenase form 3			
FPG Fasting plasma glucose			
GDMGestational diabetes mellitus			
GLP-1Glucagon-like peptide-1			
HBA1C	HBA1C Glycosylated hemoglobin		
HDL	HDL High density lipoproteins		

List of Abbreviations (Cont.)

Abb.	Full term
IDF	International diabetes federation
IL-6	Interleukin 6
IMT	Intima media thickness
Interferon- α	Interferon gamma
IR	Insulin resistance
LDL	Low density lipoproteins
LPL	Lipoprotein lipase
LPS	Lipopolysaccharides
NDR	Swedish National Diabetes registry
NF- κB	Nuclear factor kappa B
NO	Nitric oxide
PAD	Peripheral arterial disease
PCA	Protocatechuic acid
PCR CT	Polymerase chain reaction cut-off threshold
PCR	Polymerase chain reaction
ROS	Reactive oxygen species
SCFA	Short chain fatty acids
TLR5	Toll-like receptor 5
TMA	Trimethylamine
TMAO	Trimethylamine-N-oxide
TNF-α	Tumor necrosis factor alpha
VCAM-1	Vascular cell adhesion molecule-1
VLDL	Very low-density lipoproteins

Introduction

therosclerosis is a major burden of modern society and according to the 2018 report by the World Health Organization (WHO), ischemic heart disease, a major complication of atherosclerosis; is the leading cause of death worldwide (WHO, 2018).

Diabetes is considered an important risk factor for the development and severity of all forms of atherosclerosis, including peripheral arterial disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CVD) (Centers for Disease Control and Prevention, 2014).

In the past, there have been several studies suggesting that microbes may play a role in the development of atherosclerosis. And recently, colonic bacteria were considered as agents activating chronic inflammatory mechanisms. This is supported by multiple data showing the link between the gut microbiota, inflammation, and autoimmunity (Stefanie et al., 2018).

Also, some animal models suggest that obesity, insulin resistance & the metabolic syndrome are associated with alterations of the composition and the functional properties of the gut microbiota (Chistiakov et al., 2015).

More recent, a direct connection between microbiota and atherosclerosis has been established through directly atherogenic

compounds like trimethylamine-oxide (TMAO) which is produced by the action of gut microbiota (Brugere et al., 2014).

On the other hand, many members of the gut microbiota are now considered to be probiotics; providing many health benefits (Ewaschuk et al., 2007).

Bifidobacterium and Lactobacillus are two well-known probiotics that are widely used for improving human health. In vitro experiments showed that some of members of those families can assimilate cholesterol and deconjugate bile salts. Resulting in reduction of cholesterol levels and thus being protective against metabolic diseases (Lebeer et al., 2010).

Moreover, Moroti et al., reported that the administration of a synbiotic beverage contained Lactobacillus acidophilus, Bifidobacterium bifidum and oligofructose, markedly increased the plasma High Density Lipoproteins (HDL-C) and decreased fasting glycemia in elderly type 2 diabetic patients (Moroti et al., 2012).

Other mechanisms also have been postulated for their athero-protective role including: increasing colonic short chain fatty acids decreasing low Density Lipoproteins (LDL) and cholesterol synthesis, lowering inflammatory cytokines ie: interleukin six (IL-6), interleukin eight (IL-8), Tumor Necrosis Factor Alpha (TNF-α) (*Chistiakov et al.*, 2015).

AIM OF THE WORK

To study the association of gut Lactobacillus Acidophilus and the presence of atherosclerosis in type 2 diabetic patients.

Chapter 1

DIABETES AND ATHEROSCLEROSIS

Diabetes is a disorder characterized by chronic hyperglycemia resulting either from a lack of insulin production (type one), from insulin resistance (type two) or both. In the last several decades, an alarming increase in the global prevalence of diabetes has been reported. The financial impact of diabetes to the health care system is enormous causing a two to three times higher cost expenditure than the rest of the population. In ten years, the diabetic population will exceed 700 million, this has been attributed to rising obesity epidemic all over the world (*CDC*, 2014).

According to International diabetes federation (IDF), 425 million people have diabetes in the world and more than 39 million people in the middle east and north Africa region; by 2045 this will rise to 67 million. In 2017, the number of diabetics in Egypt was 8,222.6 (*IDF*, 2018).

Types of diabetes:

Diabetes can be classified into the next general types:

1. Type 1 diabetes (absolute insulin deficiency, mostly due to autoimmune β -cell destruction).

- 2. Type 2 diabetes (due to insulin resistance and progressive loss of β -cells of pancreas).
- 3. Gestational diabetes mellitus (GDM) (diagnosed in the second or third trimester of pregnancy that was absent prior to gestation).
- 4. *Specific types* of diabetes secondary to other etiology, e.g., monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young [MODY]), diseases of the exocrine pancreas (such as cystic fibrosis and pancreatitis), and drug- or chemical-induced diabetes (such as with glucocorticoid use).

(ADA, 2018)

Type two diabetes phenotypes:

Type 2 diabetes is the most prevalent diabetes form in adults worldwide, and is characterized by adulthood onset, a strong association with obesity, state of insulin resistance and gradual loss of islet β -cells functions. However, phenotypically, type 2 diabetes is more to be found a heterogeneous condition. In 2018, *Ahlqvist et al.*, identified five replicable clusters of patients with significantly distinguishing characteristics and risk of complications. This was done using a set of available data: age, BMI, HbA1c, estimates of β -cell function and insulin resistance, and presence or absence of autoantibodies. The clusters included

3	Diabetes	and A	thonosc	lovosis
\checkmark	Junetes	unu 🗡	unerosc	ierosis

Review of Titerature

severely insulin-deficient diabetes (SIDD), severe autoimmune diabetes (SAID), severe insulin-resistant diabetes (SIRD), mild age-related diabetes (MARD) and mild obesity-related diabetes (MOD) (Ahlqvist et al., 2018).

Table (1): Showing Diagnostic Criteria for Diabetes Mellitus. (*ADA*, 2018).

ADA, 2018).
American Diabetes Association Diagnostic Criteria for Diabetes Mellitus
 Fasting plasma glucose (FPG) ≥126 mg/dL (7.0 mmol/L). Fasting is defined as no caloric intake for at least 8 hours.
2. Two-hour plasma glucose ≥200 mg/dL (11.1 mmol/L) during an oral glucose tolerance test (OGTT). The test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water. or
3. Glycated hemoglobin (A1c) ≥6.5% (48 mmol/mol). The test should be performed in a laboratory using a method that is standardized to the Diabetes Control and Complications Trial (DCCT) assay. or
 In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dL (11.1 mmol/L).
*Criteria 1 to 3 require confirmatory testing; criterion 4 does not.

Table (2): Summarizing different diabetic complications (*Rich et al.*, 2009).

Acute	Chronic complications	
complications	Macro-angiopathy	Micro-angiopathy
Diabetic ketoacidosis	Coronary a. disease	Cardiomyopathy
hyperosmolar Hyperglycemia	Myonecrosis	Nephropathy
Hypoglycemic coma	Peripheral vas. dis.	Retinopathy
Diabetic coma	Stroke	Polyneuropathy
Respiratory infections		
Periodontal disease		

The chronic health complications of diabetes are mainly vascular. Diabetes is believed to shorten the lifespan of a 50-year-old person by approximately 6 years, more than half of which is caused by vascular disease. Vascular complications are usually divided into: microvascular and macrovascular complications. Where elevated blood sugar is found to be a driving force in both large and small vessel disease (*Rao et al.*, 2011).

Microvascular complications include: retinopathy and nephropathy. Diabetics have a 20-fold increased relative risk of blindness and a 25-fold higher relative risk of end-stage renal disease (ESRD).

While macrovascular disease is due to atherosclerosis. Diabetes is an important risk factor for the development and severity of all forms of atherosclerosis, including peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CVD) (*Orasanu et al.*, 2009).

Epidemiological studies show that atherosclerosis causes most of the morbidity and mortality in patients with diabetes (*Rao et al.*, 2011).

Cardiovascular disease accounts for about 44% of all-cause mortality in the diabetic patients' population, diabetes accounts for 60% of nontraumatic lower-limb amputations and diabetes