

بسم الله الرحمن الرحيم

-Cardon - Cardon - Ca

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

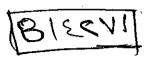
نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

بعض الوثائق

الأصلية تالفة



بالرسالة صفحات

لم ترد بالأصل

A Thesis

Entitled..

"SOME STUDIES ON THE PHYSICAL PROPERTIES OF CHEMICALLY AND THERMALLY EVAPORATED BISMUTHINITE (Bi₂S₃) FILMS".

Presented By ...

OMAR HAMED MOHAMED

In partial Fulfillment For The Requirements of the Degree Of M.Sc.

Physics Department
Faculty of Science
Suez Canal University
Ismailia, Egypt

"SOME STUDIES ON THE PHYSICAL PROPERTIES OF CHEMICALLY AND THERMALLY EVAPORATED BISMUTHINITE (Bi₂S₃) FILMS".

SUPERVISORS

Prof. Dr. SIHAM M. SALEM

professor of solid state physics,

Electron microscope and thin film Dept.

N.R.C

Thesis Approved

Siham Mahmoud

Prof. Dr. FOUAD M. SHARAF

Professor of Experimental optics,

Physics Department

Faculty of Science

Suez Canal University

Shart

SOME STUDIES ON THE PHYSICAL PROPERTIES OF CHEMICALLY AND THERMALLY EVAPORATED BISMUTHINITE (Bi₂S₃) FILMS.

Thesis Referees:

1. Prof. Dr. M. Kamal Mohamed Yousif Head of physics Depart. Man. Univers.

2. Prof. Dr. A.A. Sanad
Prof. of Physics ,El-Azhar Univers.

3 Prof.Dr. Siham M.Salem
Prof. of Physics , N.R.C.

4. Prof.Dr. Fouad M.Sharaf
Prof. of Physics ,Suez, Canal Univers.

() · Sa

Siham Mahmoud

h-shard

ACKNOWLEDGMENT

The author would like to thank Prof. Dr. Yehia M. Abbas head of physics Department, Faculty of Science, Suez Canal Unvirsity for his help during the work.

The author wishes to express his deepest gratitude and thanks to Prof. Dr. Siham Mohmoud, Prof. of Solid State Physics, Electron Microscope and Thin Films Department, NRC, for suggesting the problem, stimulating supervision, valuable guidance through the period of the research, interpreting and discussion the results.

The author express his gratitude and thanks to Prof. Dr. Fouad M. Sharaf, Prof. of Experimental Physics, Faculty of Science, Suez Canal University, for his valuable supervision, continuos advice and encouragement throughout the period of this work.

The author express his gratitude and thanks to Prof. Dr. A. H. Eid Prof. of solid state physics, Electron Microscope and thin films Department, NRC, for continuous advice during the work.

Finally, I wish like to thank all the colleagues in the Electron Microscope and Thin Films Department.

The Author
Omar Hamed Mohamed

CONTENTS

	page
Summary	1
General Introduction	3
The aim of the work	14
Chapter I. Equipments and Experimental Techniques	15
1.1 Introduction	
1.2 Material	
1.3 Preparation of the specimen	
1.3a Solution growth technique (SGT)	16
1.3b Preparation of thin vacuum - deposited films	17
1.4 Vacuum evaporation unit for preparation of thin Bi ₂ S ₃ films	18
1.5 The methods of determining the thickness of thin Bi ₂ S ₃ films	19
1.5a Microbalance method	•
1.5b Multiple beam fizeau fringes method	
1.6 Measurements of optical properties of thin Bi ₂ S ₃ films	20
1.6a Preparation of the Samples	•
1.6b Optical system (Uv-3101 PC)	21
1.7 Differential Scanning Calorimatery (DSC)	22
1.8 Measurements of the electrical properties	23
1.9 Investigation of microstructure	24
1.9a X-Ray Diffraction (XRD)	
1.9b Scanning Electron Microscope (SEM)	25
Chapter II Structure analysis	27
2.1 Introduction	
2.2 The chemical deposition process	28
2.3 Results and discussion	30
2.3a X-ray studies	
2.3b Differential scanning calorimatery studies	32
2.3c Effect of bath parameters	
2.3d Scanning electron microscope studies	33
2.4Thermal evaporation process	34
Chapter III Some optical and electrical studies	37
3.1 Introduction	
A- Optical properties	

	3.2 Theoretical consideration	<i>:</i>	
	3.3 The fundamental absorption process	39	
	3.4 Present results and discussion	42	1. N
	3.4.1 Chemical deposition	45	
•	3.4.2 Thermal deposition	47	
⊣ .	B- Electrical conductivity	.,	
·Ŧ·	3.5 Introduction	48	
	3.6 The intrinsic region	,,	
	3.7 The extrinsic region		
	3.8 Present results and discussion	49	
	Conclusion	53	
	References	58	
	List of figures	63	
	List of plates	71	
	Arabic Summary	72	
	v		

SUMMARY

SUMMARY

The present work presented the results of studies of the structure and composition of the deposited bismuth trisulfide thin films and the relevance of their optical and electrical characteristics. Also, it is to investigate the effect of the thermal treatment on the structure, optical and electrical properties of the various films. The Bi₂S₃ films prepared by two deposition techniques [thermal evaporation and chemical deposition]. Two methods were used to determine the film thickness. All the films are examined before and after their thermal treatment, by X-ray diffraction and scanning electron microscope. The results could be summarized as follows:-

- 1- The structure of the thermally and chemically deposited Bi₂S₃ films was studied by scanning electron microscopy and X-ray diffraction. From X-ray analysis, the films obtained are nearly stoichiometric. A very well defined transition to the crystalline state is observed in both thin film and powder samples after annealing in air. The thermal stability of the powder samples shows an exothermic peak near 231°C. This is consistent with the amorphous to crystalline transition in chemically deposited Bi₂S₃ (powder) samples, as already indicated to the X-ray diffraction spectra. The crystallite size was estimated using scherrer formula. The electron micrographs of the non-heated layers demonestrate the increase in the grain size with increasing of dipping time. After heating the samples, the dimensions of the crystallites are not uniform and an aggregate of islands with overgrowth scattered here and there. The rate of deposition and the terminal thickness depend sensitively on the temperature of the deposition.
- 2- For optical measurements, Bi₂S₃ thick films were prepared by the two techniques. The optical constant (n and k) were determined from the transmission and reflection spectra. The extinction coefficient k, has its

minimum value at low energy and increases with increasing photon energy. But the refractive index n, remains almost constant as the photon energy increases. The absorption coefficient is of the order of 10^4 cm⁻¹, indicating that Bi₂S₃ is of direct band gap type and that transitions are allowed. The extrapolation of the energy axis [α^2 vs hv] gives a value of band gap equal to 1.68 ev for the chemically deposited films. In the thermal deposition, the direct energy gap [Eg = 1.6 ev] was calculated from the relation (3.15).

3- The electrical resistivity of the different samples was measured as a function of temperature. Two distinct regions are clearly seen corresponding to two activation energy. The activation energies for the two regions were calculated from the relation of ln R vs. 1 / T for a different thicknesses and conditions. At sufficiently high temperature, intrinsic conductivity starts and electron transitions from the valence band to the conduction band takes place. The thermal energy gap is 1.38 ev which agree with the value of 1.38 ev reported by other authors.

GENERAL INTRODUCTION