

MLRMUD: A MULTI LINEAR REGRESSION APPROACH FOR MISSING VALUES PREDICTION WITH UNKNOWN DEPENDENT VARIABLE

By

Ahmed Karama Mahboab Alhebshi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE in Computer Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

MLRMUD: A MULTI LINEAR REGRESSION APPROACH FOR MISSING VALUES PREDICTION WITH UNKNOWN DEPENDENT VARIABLE

By **Ahmed Karama Mahboab Alhebshi**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

Under the Supervision of

Prof. Dr. Samir I. Shaheen

Professor Computer Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Amir F. Atiya

Professor Computer Engineering Department, Faculty of Engineering, Cairo University

Dr. Mona F. Ahmed

Assistant Professor Computer Engineering Department, Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

MLRMUD: A MULTI LINEAR REGRESSION APPROACH FOR MISSING VALUES PREDICTION WITH UNKNOWN DEPENDENT VARIABLE

By Ahmed Karama Mahboab Alhebshi

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in **Computer Engineering**

Examining Committee	
Prof. Dr. Samir I. Shaheen	Thesis Main Advisor
Prof. Dr. Ihab Elsayed Talkhan	Internal Examiner
Prof. Dr. Reda Abd-Alwahab Ahmed	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer's Name: Ahmed Karama Mahboab Alhebshi

Date of Birth: 20/5/1985 **Nationality:** Yemeni

E-mail: engcmp505@gmail.com

Phone: 01091655230

Address: Giza-Main Mahattah street

Registration Date:1/10/2014Awarding Date:..../.....Degree:Master of ScienceDepartment:Computer Engineering

Supervisors:

Prof. Dr. Samir I. Shaheen Prof. Dr. Amir F. Atiya Dr. Mona F. Ahmed

Examiners:

Prof. Dr. Samir I. Shaheen (Thesis Main Advisor) Prof. Dr. Ihab Elsayed Talkhan (Internal Examiner) Prof. Dr. Reda Abd-Alwahab (External Examiner) Professor in faculty of computers and information

Cairo university

Title of Thesis:

MLRMUD: A Multi Linear Regression Approach for Missing Values Prediction with Unknown Dependent Variable

Key Words:

missing values; splitting algorithm; dependent variable; multi linear regression; regression coefficients

Summary:

The Missing Value problem (MV) is the problem of predicting the missing value in the data set while achieving accurate values. An Additional attribute has been imposed on the missing value problem which is an unknown dependent variable.

In this work, a new approach, MLRMUD, based on Multiple Linear Regression is used to predict Missing values for a data set with an Unknown Dependent variable if complete rows are at least 20%. If they are less than that the Mean method is used to fill some rows until the complete rows reach 20%, after that MLRMUD can be applied normally. This approach is composed of three algorithms; splitting algorithm, dependent variable selection algorithm and multi linear regression algorithm.

MLRMUD is compared to other counterparts in the literature where it was proved that it outperforms them all in the accuracy of missing values computation determined in terms of the Root Mean Square Error (RMSE) and Mean Standard Error (MSE). A method to determine the unknown dependent variable from the training set is proposed. The results show that the proposed method can successfully select the dependent variable with an accuracy of 83% overall the data sets examined

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Karama Mahboab Alhebshi Date:10/7/2019

Signature:

Dedication

I'd like to dedicate this thesis to my wife and my family for supporting me during my work

Acknowledgments

I would have never gone through this work without the honest help and support of many people in my life to whom I dedicate this section.

First of all, I would like to express my gratitude to **Allah**, who is the reason of my strength and who always raises us over limits beyond our expectations, and who can do everything immeasurably far beyond our thoughts.

I would like to thank my supervisor **Dr. Mona Farouk** for suggesting the research path and for her consistent guidance and advice. He has assisted me in different aspects of my work and has been very keen on my progress in this thesis.

I would like to thank my supervisor **Prof. Samir I. Shaheen and Prof. Amir F. Atiya** for their continuous efforts and concern. They has provided me with important scientific information and aided me throughout my thesis.

I would like to thank my **beloved family** for always finding them by my side, and for their sincere encouragement throughout my work and throughout my entire 1

Table of Contents

LIST OF	TABLES	V
LIST OF	FIGURES	.VI
NOMENO	CLATURE	VII
ABSTRA	CT	/III
СНАРТЕ	R 1: INTRODUCTION	1
1.1.	OVERVIEW OF MISSING VALUE PROBLEM (MVP)	1
1.2.	MOTIVATION	
1.2.1.	Missing Value Approaches	
1.2.2.	Real Applications of Unknown Dependent Variable	
1.2.2	.1. NodesTraffic Problem.	2
1.2.2	_	
1.3.	PROBLEM STATEMENT.	
1.4.	THESIS OBJECTIVE	
1.5.	ORGANIZATION OF THE THESIS	5
СНАРТЕ	ER 2: BACKGROUND	7
2.1.	BIG DATA DEFINITION	
2.2.	BIG DATA CONSIDERATIONS	7
2.3.	BIG DATA ANALYTICS TECHNOLOGIES AND TOOLS	8
2.4.	HOW BIG DATA ANALYTICS WORKS	8
2.5.	AWS MANAGEMENT CONSOLE	9
CHAPTI	ER 3 : RELATED WORK	12
3.1.	Introduction	12
3.2.	STANDARD ALGORITHMS	12
3.2.1	k-Nearest Neighbor Imputation(KNN)	12
3.2.2.	Listwise or Case Deletion	16
3.2.3.	Mean Substitution	16
3.2.4.	Expectation-Maximization	16
3.2.5.	Multiple Imputation	16
3.3.	NEW APPROACHES TO ESTIMATE MISSING VALUES	17
3.3.1.	Simple Linear Regression	17
3.3.2.	Statistical Models of Multiple Linear Regressions	18
3.3.3.	Incomplete Data Recovery Using Linear Regression	
3.3.4.	Linear Regression using A Matrix	
3.3.5.	Decision Tree Induction	
3.3.6.	Selecting Scalable Algorithms: C4.5 Algorithm and K-Means	
3.3.7.	Incomplete Data Hierachical Clustering	
3.3.8.	Identify the Missing Data Algorithms (IMDA)	
3.3.9.	Fuzzy Possibilistic C Means Based on Support Vector Regression and Genetic Algorithm.	
3.3.10	1 1 11	
3.3.11	. Imputed Data Using The Classifier	30

APPEND	OIX A: DEFINITIONS	71
REFERE	ENCES	68
6.2.	FUTURE WORK	67
6.1.	CONCLUSION	
CHAPTI	ER 6 : CONCLUSION AND FUTURE WORK	
J.0.	COMPARISON OF THE I ROPOSED WORK AND BOA)	04
5.7. 5.8.	COMPARISON OF THE PROPOSED WORK AND BGA)	
5.7.	COMPARISON OF THE PROPOSED WORK AND SIX DIFFERENT APPROACH	
	DENT VARIABLE	
5.6.	COMPARISON OF ACTUAL DEPENDENT VARIABLE AND THE PROPOSED V	
	ZED WITH SUPPORT VECTOR REGRESSION AND GENETIC ALGORITHM	
5.5.	COMPARISON OF THE PROPOSED WORK AND FUZZY POSSIBILISTIC C M	
5.4.	REGRESSION COEFFICIENTS ESTIMATION	
5.3.4	4. Dependent variable selection algorithm for data set 3	59
5.3.3		
5.3.2	. Dependent variable selection algorithm for data set 1	57
5.3.1	Dependent variable selection algorithm for Brainsize data set	57
5.3.	DEPENDENT VARIABLE EXPERIMENTS	56
5.2	.2.1. 20% Missing values	50
5.2.2	. The Experiment 2	55
5.2.1	8	
5.2.1 5.2.1		
5.2.1	· · · · · · · · · · · · · · · · · · ·	
5.2.1.	1	
5.2.	MISSING VALUE ESTIMATION	
5.1.	EXPERIMENTAL SETUP	
	ER 5 : EXPERIMENTAL RESULTS	
4.3.4.		
4.3.3.		
4.3.2	. Dependent Variable Selection Algorithm	
4.3.1.	1 6 6	
4.3.	OUR PROPOSED ALGORITHM	
4.2.	CORRELATION MATRIX	
4.1.	OVERVOEW OF MULTI LINEAR REGRESSION	
3.3.1	4.2 Bayesian Theorem ER 4: PROPOSED APPROACH	
3.3.1		
3.3.14	\mathcal{E}	
3.3.13	1	
3.3.13	B. Fuzzy C means Clustering Algorithm	35
3.3.12	2. Jaccard Dissimilarity Coefficients for The Missing Value in The Text	33

List of Tables

Table I.1: Nomenclature	.VII
Table 3.1: Employee data set with missing values	18
Table 3.2: Data set before and after applying an unsupervised filter	
Table 3.3: Accuracy of imputed missing value on day 8	
Table 3.4: Accuracy of imputed missing value on day 8	
Table 3.5: Iris data set properties	
Table 3.6: Comparison between six different approaches with respect to mean standard	
Table 3.7: Different missing value methods with k-means	
Table 3.8: Comparing the results with k mix clustering	
Table 3.9: Different Missing Imputation Methods with J48 Classification	
Table 3.10: Different Missing Imputation Methods with K-NN Classification	
Table 3.11: Different Missing Imputation Methods with Fuzzy Rule Induction Algorithm	
Table 3.12: highest sensitivity value found with each of the imputation method	32
Table 3.13: Text files and Corresponding Frequent Item Sets Algorithm	34
Table 3.14: Similarity Matrix Obtained By Jaccard Similarity Measure over Frequen	ıt
Item Sets Obtained From Each Text File	34
Table 3.15: Similarity matrix obtained after step 2.	.35
Table 3.16: The information of four data sets in UCI	35
Table 4.1: The main data set for apply the proposed splitting algorithm	46
Table 4.2: Training data set after applied splitting algorithm	46
Table 4.3: Test data set after applied splitting algorithm	46
Table 4.4: Show different splitting algorithm	46
Table 4.5: Training data set after applied another splitting algorithm	.46
Table 4.6: Test data set after applied another splitting algorithm	46
Table 4.7: The sample data set for explaining dependent variable selection algorithm	48
Table 4.8: Show the variable and the variables which related to it after applied	
dependent variable selection algorithm	48
Table 4.9:The sample data set for more than one dependent variable	48
Table 4.10: Show the variable and the variables which related to it after applied	
dependent variable selection algorithm for more than one dependent variable	49
Table 5.1: The proposed Work computes predicted values and RMSE to measure the	
accuracy of the missing value ratio 5%	
Table 5.2: The proposed work computes predicted values and RMSE to measure the	
accuracy of the missing value ratio 10%	
Table 5.3: The proposed work computes predicted values and RMSE to measure the	
accuracy of the missing value ratio 15%	
·	
Table 5.4: The proposed work computes predicted values and RMSE to measure the	
accuracy of missing value ratio 20%	
Table 5.5: The detailed results to compute the mean standard error of the approach.	
Table 5.6: Sample data to test the proposed work in selecting the dependent variable	3.56

Table 5.7: Rsults of comparing the actual dependent variable and the proposed	
dependent variable (brain data set).	.57
Table 5.8: Results of comparing the actual dependent variable and the proposed	
dependent variable (data set 1)	.58
Table 5.9: Results of comparing the actual dependent variable and the proposed	
dependent variable (data set 2)	.58
Table 5.10:Results of comparing actual dependent variable and the proposed depend	ent
variable (data set 3)	59
Table 5.11: The regression coefficients of our approach for a number of different	
missing value cases (data set 1)	.60
Table 5.12: The regression coefficients of our approach for a number of different	
missing value cases (data set 2)	.61
Table 5.13: The regression coefficients of our approach for a number of different	
missing value cases (data set 3)	.62
Table 5.14: The results of comparing our approach to Fuzzy Possibilistic C Means	
(FPCM-SVRGA) respect to RMSE.	.63
Table 5.15: Comparing our approach to another six approach for missing value ratio	
20% of iris data set respect to mean standard error.	.64
Table 5.16: Comparing our approach to BGA respect to mean standard error	65

List of Figures

Figure 1.1: Missing value problem with unknown dependent variable
Figure 1.2: Sample data contains missing values and unknown dependent variable4
Figure 3.1: K-Nearest Neighbor Imputation (KNN) (Liqiang Pan, Jianzhong Li,2010)12
Figure 3.2: RMSE vs. Sampling Interval (Liqiang Pan, Jianzhong Li,2010)
Figure 3.3: RMSE vs. Number of Neighbor Nodes(Liqiang Pan, Jianzhong Li,2010). 13
Figure 3.4: RMSE vs. Number of Missing Data (Liqiang Pan, Jianzhong Li, 2010) 14
Figure 3.5: RMSE vs. Sampling Interval (Liqiang Pan, Jianzhong Li,2010)
Figure 3.6: RMSE vs. A Number of Neighbor Nodes (Liqiang Pan, Jianzhong Li)15
Figure 3.7: RMSE vs. Number of Missing Values
Figure 3.8: Statistical Models of Multiple Linear Regressions (Mr.M.B.Shelke,2013) 18
Figure 3.9: Graphical Representation of Employee Data (Mr.M.B.Shelke, 2013)19 Figure 3.10: The Values of Salary Attribute After Prediction All The Missing Values (Mr.M.B.Shelke, Mr.K.B.Bedede, 2013)
(Mr.M.B.Shelke, Mr.K.B.Badade, 2013)
Figure 3.11: The Approach Diagram (Hailin, 2014)
Figure 3.12: Listwise Deletion, Top, Removal of Corrupted Spectra(Yasser Beyad, Marcel Maeder, 2013)
Figure 3.13: Decision Tree Induction (Raju Dara and Dr.Ch.Satyanarayana, 2015) .23
Figure 3.14: Diagram of Decision Tree For Age(Raju Dara
Figure 3.15: Diagram of Decision Tree for Empid (Raju Dara, 2015)24
Figure 3.16: Membership Function Estimation(p.saravanan, p.sailakshmi, 2015) 26
Figure 3.17: Fuzzy Possibilistic C Mean Based Support Vector Regression And Genetic
Algorithm
Figure 3.18: FPCM Algorithm (p.saravanan, p.sailakshmi, 2015)
Figure 3.19: Comparison between FCM-SVRGA and FPCM-SVRGA
Figure 3.20: Distribution Missing Values in Four Attributes; Petal Width, Petal Length,
Sepal Length and Sepal Width(Geeta Chhabra , 2017)29
Figure 3.21: Algorithm of Imputed the Missing Values Using Classifier(Raju Dara1 and
Dr.Ch.Satyanarayana2, 2015)
(Dr. Ch. Satyanarayana, Raju Dara, Dr. A. Govardhan Professor, 2017)
Figure 3.23: Three Dimensional Shaded Surfaces Obtained by Using Jaccard Similarity
Measure over Frequent Item Sets Obtained from Each Text File
Figure 3.24: Three Dimensional Shaded Surfaces Obtained After Applying Step 235
Figure 3.25: Comparison of The Accuracy of Femimpute, Knnimpute, and Sknnimpute
Methods for Data Set 1 over 1 and 20% Data Missing(JiaWei Luo, TaoYang37
Figure 3.26: Comparison of The Accuracy of Fcmimpute, Knnimpute, and Sknnimpute Methods for Data Set 2 over 1 and 20% Data Missing
Figure 3.27: Comparison of The Accuracy of Femimpute, Knnimpute, and Sknnimpute
Methods for Data Set 3 over 1 and 20% Data Missing

Figure 3.28: Comparison of The Accuracy of Femimpute, Knnimpute, and Sknnimpute	te
Methods for Data Set 4 over 1 and 20% Data Missing	39
Figure 3.29: Structure of Chromosome (R. Devi Priya and S. Kuppuswami, 2015).	39
Figure 3.30: Structure of Bayesian Genetic Algorithm	34
Figure 3.31: RMSE for Abalone Data set by Implementing Mean, KNN Imputation, Mean, I	ΛI
and BGA at Different Missing Rates	40
Figure 3.32: RMSE for Wine Data set by Implementing Mean, KNN Imputation, MI,	
And BGA At Different Missing Rates	40
Figure 3.33: RMSE for Automobile Data set by Implementing Mean, KNN Imputatio	n,
MI And BGA at Different Missing Rates	41
Figure 3.34: RMSE for housing data set by implementing mean, kNN imputation, MI	
and BGA at different missing rates	41
Figure 4.1: MLRMUD Flowchart	44
Figure 4.2: Splitting Algorithm	45
Figure 4.3: Dependent Variable Selection Algorithm	47
Figure 4.4: Complete Proposed Algorithm	51

Nomenclature

Table I.1: List of Acronyms

Acronym	Definition
AKE	Applying K-nearest neighbor Estimation
BGA	Bayesian Genetic Algorithm
Bi	Regression Coefficients
CART	Multiple Classification And Regression
	Tree
CD	Complete Data
CDKDV	Complete Data with Known Dependent
	Variable
CDUDV	Complete Data with Unknown Dependent
	Variable
FPCM-SVRGA	Fuzzy Possibilistic C Means optimized
	with Support Vector Regression and
	Genetic Algorithm
MAR	Missing at Random
MCAR	Missing Completely at Random
MD	Missing Data
MLR	Multi Linear Regression
MLRMUD	Multi Linear Regression for Missing
	Value and Unknown Dependent Variable
MSE	Mean Standard Error
MV	Missing Value
MVPUDV	Missing Value Problem with Unknown
	Dependent Value
RMSE	Root Mean Square Error
TS	Training Set
TSz	Test Set
UDV	Unknown Dependent Variable
X _i Y	Independent Variables
Y	Dependent Variable