

DAMAGE DETECTION OF BEAMS USING WAVELET TRANSFORM

By

Eng. Sara Abdel Aziz Ibrahim Selmy

A Thesis submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
in
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

DAMAGE DETECTION OF BEAMS USING WAVELET TRANSFORM

By

Eng. Sara Abdel Aziz Ibrahim Selmy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
in
Structural Engineering

Under The Supervision Of

Prof. Dr. Sherif A. Mourad

Prof. Dr. Atef E. Bakry

Professor of Steel Structure Faculty of Engineering, Cairo University Professor of Structural Analysis Faculty of Engineering, Zagazig University

Dr. Ahmed R. Desoki

Assistant Professor, Aerospace Engineering Department Faculty of Engineering, Cairo University

DAMAGE DETECTION OF BEAMS USING WAVELET TRANSFORM

By

Eng. Sara Abdel Aziz Ibrahim Selmy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
in
Structural Engineering

Examining Committee	
Prof. Dr. Sherif Ahmed Mourad	Signature
Faculty of Engineering, Cairo University, Thesis Main Advisor Prof. Dr. Ahmed Farouk Hassan Faculty of Engineering, Cairo University, Internal Examiner	••••••
Prof. Dr. Mohammed Noor El - Deen Fayed Faculty of Engineering, Ain-Shams University, External Examiner	

Approved by the

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 Engineer's Name: Sara Abdel Aziz Ibrahim Selmy

Date of Birth: 18/6/1984

Nationality: Egyptian

E- mail: sara.a.selmy@gmail.com

Phone: 01281667232

Address: 82 Ezz El-Deen Omar / Haram / Giza.

Registration Date: 1/10/2012

Awarding Date:

Degree: Doctor of philosophy

Department: Structural Engineering

Supervisors: Prof. Dr. Sherif Ahmed Mourad

Prof. Dr. Atef E. Bakry

Dr. Ahmed R. Desoki

Examiners: Prof. Dr. Mohammed Noor El - Deen Fayed (External examiner)

Prof. Dr. Ahmed Farouk Hassan (Internal examiner)

Prof. Dr. Sherif Ahmed Mourad (Thesis main advisor)

Title of Thesis: Damage Detection of Beams Using Wavelet Transform

Keywords: Damage detection, beams, wavelet transform, fundamental mode shape, numerical studies and experimental work

Summary:

This research studies the detection of damages in beams using wavelet transform method. The damage detection is done through two steps. First, detecting the damage location is indicated by either the continuous wavelet transform or the discrete wavelet transform. Second, the damage severity is calculated by a proposed equation which depends on the detail wavelet coefficients. Four finite element beam models (fixed-fixed, hinged-hinged, cantilever, two spans) are studied. Two proposed procedures are used for localizing the damage which is based on the fundamental mode shapes. Some aspects that effect the assessment of damage detection such as wavelet family, signal to noise ratio (SNR) and no. of sensors are studied.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Dedication

I would like to express my deepest gratitude to my family: Father Prof. Dr.

Abdel Aziz Selmy (Zagazig University, Faculty of Engineering), Brother Dr.

Hossam, Husband Eng. Waleed, Mother and my lovely Sons (Ahmed,

Mohammed and Mostafa) for their encouraging and continuous

support to me to complete this work over so many years.

Your encouragements have been greatly appreciating

Acknowledgments

First of all, the most gratitude to ALLAH who has guided me to complete this work. Secondly, I would like to express my sincerest gratitude to my advisors, *Prof. Dr. Sherif Mourad and Prof. Dr. Atef Eraky* for giving me this opportunity to finish my thesis under their supervision. Their continuous technical and moral support throughout the work has helped me a lot in this thesis. Without their guidance, support and patience I would not have been able to reach this stage.

Also, I want to thank *Dr. Ahmed Desoki* as my advisor. His greet help to make the experimental work. Also, I want to express my sincere gratitude to the moderators of the structural dynamics laboratory at Aerospace Engineering Department, Cairo University for their great support to this research.

Table of Contents

DISCLAIMER	I
DEDICATION	II
ACKNOWLEDGMENTS	II
TABLE OF CONTENTS	IV
LIST OF TABLES	V
LIST OF FIGURES	V
ABSTRACTCHAPTER 1: INTRODUCTION	VI 1
1.1. General	1
1.2. Current Research Scope	2
1.3. Thesis Organization	2
CHAPTER 2: LITERATURE REVIEW	4
2.1.General	4
2.2. Vibration-based damage detection methods	6
2.2.1. Methods based on natural frequency	6
2.2.1.1. Theoretical route	6
2.2.1.2. Experimental route	6
2.2.2. Methods Based On Mode Shapes	7
2.2.2.1. Traditional mode shape change methods	7
2.2.2.2. Mode shape analysis using modern signal processing	7
methods	-
Fractal Dimension Method	8
■ Generalized Fractal Dimensions Method	8
■ Wavelet transform method	8
2.2.3. Methods Based On Curvature/ Strain Mode Shape	1
2.2.3.1. Traditional Modal Curvature Change Method	1
2.2.3.2. Modern Signal Processing Method Using The Modal	4
Curvature	19
2.2.3.3. Modal Strain Energy- Based Method	1

2.2.4. Other Methods Based On Modal Parameters	19
2.2.4.1. Modal Flexibility – based method	19
2.2.4.2. Optimization Algorithm-based Method	20
2.3.Structural Health Monitoring and Damage Detection for	20
Real Cases	
2.3.1. Shopping center parking, Heerlen, Netherlands (case 1)	20
2.3.2. Stade de France, Saint-Denis, France (case 2)	21
2.3.3. Sagrada Familia, Barcelona, Spain (case 3)	22
2.3.4. Tower 600, 3rd Avenue, New York, United States (case 4)	23
2.3.5. Champlain Bridge, Montreal, Canada (case 5)	23
2.3.6. Manhattan Bridge, New-York city, USA (case 6)	24
CHAPTER 3: WAVELET THEORY AND FINITE	26
ELEMENT MODELING	20
3.1.General	26
3.2.Theoretical Background	26
3.2.1. Brief Overview of Wavelets and Wavelet Transforms	26
3.2.2. Wavelet Families	28
3.2.3. Development of Wavelet Transform	28
3.3. Theory of Wavelet Transforms	30
3.3.1. Continuous wavelet transform	31
3.3.2. Discrete wavelet transform	31
3.4.Finite element analysis	32
3.4.1. Construction of models	32
3.4.2. Finite Element Models	35
3.4.2.1. Fixed-fixed model	35
3.4.2.2. Hinged- hinged model	42
3.4.2.3. Cantilever model	49
3.4.2.4. Two- spans model	54
3.5.Case studies	63
CHAPTER 4: NUMERICAL RESULTS OF DAMAGE	
DETECTION LOCATION	64
A 1 Canaral	64

4.2.Fundamental mode shape	64
4.3. Mode shape differences function	66
4.4.Damage detection using wavelet transform on mode shape difference function	70 70
4.4.2. Hinged- hinged beam model	75
4.4.3. Cantilever beam model	79
4.4.4. Two- spans beam model	81
4.5.Damage detection using wavelet transform on damaged fundamental mode shape	84 84
4.5.2. Hinged- hinged beam model	88
4.5.3. Cantilever beam model	91
4.5.4. Two- spans beam model	93
4.6.Main factors influencing The Damage Location Estimation	95 95
4.6.2. Effect of wavelet Family Order	97
4.6.3. Effect of noise on wavelet analysis	102
4.6.4. Effect of data points (sensors) numbers	107
CHAPTER 5: DAMAGE SEVERITY ESTIMATION	111
5.1. General	111
5.2. Derivation of Damage Severity Equation	111
5.2.1. Relationship between the Absolute maximum detail wavelet coefficient, Damage Location and Damage Severity	111 116
5.3. Numerical Verification for the Severity Equation	117
CHAPTER 6: EXPERIMENTAL WORK	119
6.1.General	119 119 120 121
6.4.Experimental modal analysis	123

6.4.1. Frequency response function	124
6.4.2. Fundamental mode shape	125
6.5. The proposed damage detection procedures	126
6.5.1. Damage localization using wavelet transform on mode shape differences	127
6.5.2. Damage localization using wavelet transform on displacement differences	128
6.6.Effect of excitation location	129
6.7. Severity results	130
CHAPTER 7: CONCLUSION AND RECOMMENDED	131
FUTURE WORKS	131
7.1.General	131
7.2.Conclusions	131
7.3.Future Works	132
REFERENCES	133
APPENDIX (Thesis published papers)	143

List of Tables

Table (3.1) Steel beam geometric and elements properties	35
Table (3.2) Cases of damage location	63
Table (4.1) Damage detection location errors using wavelet transform	74
Table (4.2) Comparison between the two proposed damage localization procedures	110
Table (6.1) Damage scenario and location	120
Table (6.2) Accelerometers and their locations from left support	122
Table (6.3) Estimated severity for damage 50% for all cases	130

List of Figures

Figure (2.1) Methods of vibration – based damage detection	5
Figure (2.2) Shopping center parking, Heerlen, Netherlands [85]	20
Figure (2.3) Shows Stade de France, Saint-Denis, France and the monitoring system [85]	21
Figure (2.4) Shows Sagrada Familia, Barcelona, Spain and its structural health monitoring [85]	22
Figure (2.5) Shows Tower 600, 3rd Avenue, New York, United States and its structural health monitoring [85]	23
Figure (2.6) Shows Champlain Bridge, Montreal, Canada and its structural health monitoring [85]	24
Figure (2.7) Shows Manhattan Bridge, New-York city, USA and its structural health monitoring [85]	25
Figure (3.1) The little wave. (a) Some wavelets. (b) Location. (c) Scale	27
Figure (3.2) Wavelet, signal and the transform	27
Figure (3.3) Show some wavelet	28
Figure (3.4) Haar wavelet function	29
Figure (3.5) Daubechies family wavelets functions	29
Figure (3.6) Coiflets and Symlets families wavelet functions	30
Figure (3.7) Three levels of decomposition	34
Figure (3.8) Finite element flowchart and wavelet damage detection procedures	35
Figure (3.9) Fixed-fixed steel beam	36
Figure (3.10) Hinged-hinged steel beam	43
Figure (3.11) Cantilever steel beam	49
Figure (3.12) Two spans beam	54
Figure (4.1) Fundamental mode shape of undamaged and damaged cases (1-5) fixed-fixed model	65
Figure (4.2) Fundamental mode shape of undamaged and damaged cases (1-5) for hinged-hinged model	65
Figure (4.3) Fundamental mode shape of undamaged and damaged cases (1-5) for captilever model	66

Figure (4.4) Fundamental mode shape of undamaged and damaged cases (1-5) for two span model
Figure (4.5)Mode shape differences for damage cases (a) case 1 and (b) case
12 (fixed-fixed model)
Figure (4.6) Mode shape differences for damage cases (a) case 4 and (b) case 12 (hinged-hinged model)
Figure (4.7) Mode shape differences for damage cases (a) case 6 and (b) case 12 (Cantilever model)
Figure (4.8) Mode shape differences for damage cases (a) case 3 and (b) case
15 (two-span model)
Figure (4.9) DWT on mode shape difference in fixed-fixed model for damage
case 1
Figure (4.10) DWT on mode shape difference in fixed-fixed model for case 3
Figure (4.11) CWT on mode shape difference in fixed-fixed model for damage
case 5
Figure (4.12) DWT on mode shape difference in fixed-fixed model for damage case 7
Figure (4.13) CWT on mode shape difference using 'db2' for damage case 8
Figure (4.14) DWT on mode shape difference in fixed-fixed model for damage case 12
Figure (4.15) CWT on mode shape difference in fixed-fixed model for damage
case 13
Figure (4.16) Damage localization accuracy (db 2) by the first procedure for fixed-fixed beam model
Figure (4.17) Damage localization accuracy (sym 4) by the first procedure for fixed-fixed beam model
Figure (4.18) CWT on mode shape difference in hinged-hinged model for
damage damage case 3
Figure (4.19) DWT on mode shape difference in hinged-hinged model for
damage case 4
Figure (4.20) CWT on mode shape difference in hinged-hinged model for damage case 8
Figure (4.21) CWT on mode shape difference in hinged-hinged model for
•
damage case 14
hinged-hinged beam model
Figure (4.23) Damage localization accuracy (sym2) [73]
Figure (4.24) DWT on mode shape difference in cantilever model for damage case 6
Figure (4.25) DWT on mode shape difference in cantilever model for damage
case 9
Figure (4.26) DWT on mode shape difference in cantilever model for damage case 12
Figure (4.27) Damage localization accuracy (sym2) by the first procedure for
cantilever heam model

Figure (4.28)	DWT on mode shape difference in two-spans model for damage case 6
E! (4.00)	
Figure (4.29)	DWT on mode shape difference in two-spans model for damage case 10
Figure (4.30)	DWT on mode shape difference in two-spans model for damage case 15
Figure (4.31)	Damage localization accuracy (sym2) by the first procedure for two- spans beam model
Figure (4.32)	Primary DWT on damaged fundamental mode shape in fixed-fixed model for damage case 1
Figure (4.33)	Final DWT on damaged fundamental mode shape in fixed-fixed model for damage case 1
Figure (4.34)	Final DWT on damaged fundamental mode shape in fixed-fixed model for damage case 7
Figure (4.35)	Final DWT on damaged fundamental mode shape in fixed-fixed model for case damage 12
Figure (4.36)	Damage localization accuracy by second procedure for fixed-fixed beam model (sym6)
Figure (4.37)	DWT on undamaged fundamental in fixed-fixed model mode shape
Figure (4.38)	Extension damaged fundamental mode shape in hinged-hinged model for damage case 4
Figure (4.39)	CWT on damaged fundamental mode shape in hinged-hinged model for damage case 4
Figure (4.40)	DWT on damaged fundamental mode shape in hinged-hinged model for damage case 7
Figure (4.41)	CWT on damaged fundamental mode shape in hinged-hinged model for damage case 16
Figure (4.42)	Damage localization accuracy (sym 8) by the second procedure for hinged-hinged beam model
Figure (4.43)	CWT on damaged fundamental mode shape in cantilever model for damage case 6
Figure (4.44)	CWT on damaged fundamental mode shape in cantilever model for damage case 7
Figure (4.45)	CWT on damaged fundamental mode shape in cantilever model for damage case 14
	Damage localization accuracy (sym 4) by second procedure for cantilever beam model
Figure (4.47)	DWT on damaged fundamental mode shape in two- spans model for damage case 6
Figure (4.48)	DWT on damaged fundamental mode shape in two-spans model for damage case 11
Figure (4 40)	DWT on damaged fundamental mode shape in two-spans model
11gui (4.47)	for domage case 15