

Lung Ultrasonography as Tool for Follow Up of Ventilated Neonates for Prediction of Weaning Readiness

Thesis

Submitted for Partial Fulfillment of MD Degree in **Pediatrics**

By

Ayah Mohamed Zaki Shabana

M.B, B.Ch. (2008) MSc (2013) Faculty of Medicine, Ain Shams University

Supervised by

Prof. Hisham Abdel Samie Awad

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

Prof. Soha Mohamed Khafagy

Professor of Pediatrics Faculty of Medicine- Ain Shams University

Dr. Nivan Taha Ahmed

Consultant of Diagnostic Radiology Faculty of Medicine- Ain Shams University

Dr. Basma Mohamed Shehata

Lecturer of Pediatrics Faculty of Medicine- Ain Shams University

Faculty of Medicine - Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my sincere feelings of appreciation and admiration to **Prof. Dr. Hisham Abdel Samie**Awad, Professor of Pediatrics, Faculty of Medicine, Ain-Shams

University for his tremendous support that helped me through this work. He personifies the enthusiasm of a scientist moved by the joy of discovery and he continually motivates me.

Also I would like to thank and express my appreciation to **Professor Dr. Soha Mohamed Khafagy** Professor of Pediatrics, Faculty of Medicine, Ain-Shams University for her kind help, valuable guidance, assistance and encouragement.. I am deeply grateful for her more than words can ever express.

I would like also to express my deep feelings of gratitude to **Dr. Mioan Taha Ahmed,** Consultant of Diagnostic Radiology, Faculty of Medicine, Ain-Shams University for her indescribable support.

I sincerely appreciate the ongoing support of my mentor and friend **Dr. Basma Mohamed Shehata**, Lecturer of Pediatrics, Faculty of Medicine, Ain-Shams University and I would really like to thank her for her patience and meticulous revision of this work.

I am especially thankful to the patients who inspired my research pursuits and provide continued motivation to search for knowledge.

I would really like to thank Ain Shams university hospital Neonatal intensive care unit team (professors, colleagues, nurses every single coworker). I would never dream of working with better team. You helped me every single step of this road.

This journey could not have begun without the assistance of my wonderful family and friends

Ayah Mohamed Zaki Shabana

List of Contents

Title	Page No.
List of Abbreviations	_
List of Tables	7
List of Figures	10
Introduction	1 -
Aim of the Work	15
Review of Literature	
Lung and Diaphragm Ultrasound	16
■ Weaning from Mechanical Ventilation	53
Patients and Methods	62
Results	80
Discussion	110
Summary	125
Conclusion	129
Recommendations	130
References	131
Appendix	153
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
	Alveolar Interstitial Syndrome
	Acute Respiratory Distress Syndrome
<i>AUC</i>	Area Under The Curve
<i>BLUE</i>	Bedside Lung Ultrasound in Emergency
<i>BPD</i>	Broncho-Pulmonary Dysplasia
<i>BPM</i>	Breath Per Minute
<i>BW</i>	Birth Weight
<i>CPAP</i>	Continuous Positive Airway Pressure
<i>CRP</i>	C- Reactive Protein
<i>CXR</i>	Chest X-Ray
	Diaphragmatic Thickening Fraction
	Endotracheal Tube
F group	Failure Extubation Group
<u> </u>	Fluid Administration Limited by Lung
	Sonogrophy
FiO ₂	Fractioned Inspired Oxygen,
	Heart Rate Characteristics Index
<i>IQR</i>	Inter-Quartile Range
<i>IT</i>	Inspiratory Time
	Interventricular Hemorrhage
	Left Diaphragmatic Excursion,
	Left Diaphragm Expiration Thickness
-	Left Diaphragm Inspiration Thickness
_	Left Diaphragmatic Thickening Fraction
<i>LUS</i>	
<i>MABP</i>	Mean Arterial Blood Pressure
<i>MAP</i>	Mean Airway Pressure
	Meconium Aspiration Syndrome
	Necrotizing Enterocolitis
	Non Invasive Positive Pressure Ventilation
<i>NIV</i>	Non Invasive Ventilation
<i>NPV</i>	Negative Predictive Value

Tist of Abbreviations cont...

Abb.	Full term
PCO ₂	. Partial Pressure Carbon Dioxide
	Patent Ductus Arteriosis
	Positive End Expiratory Pressure,
	Positive Inspiratory Pressure,
	Partial Pressure Of Oxygen
	Point-Of-Care Lung Ultrasound
	Positive Predictive Value
<i>PSV</i>	Pressure Support Ventilation
<i>PTV</i>	Patient Triggered Ventilation
PvCO2	Partial Pressure Venous Carbon Dioxide,
<i>RDS</i>	Respiratory Distress Syndrome
	Receiver Operating Characteristic Curve
<i>RR</i>	Respiratory Rate
RSBI	Rapid Shallow Breathing Index
Rt D.Excursion	Right Diaphragmatic Excursion
Rt D.Exp. Thick	Right Diaphragm Expiration Thicknes.
Rt D.Insp. Thick	Right Diaphragm Inspiration Thickness
Rt DTF	Right Diaphragmatic Thickening Fraction
S group	Successful Extubation Group
<i>SAFE</i>	Sonographic Algorithm For Life
	Threatening Emergencies
SBT	Spontaneous Breathing Trials
	Transient Tachypnea Of Newborn
	Ventilator Associated Pneumonia
<i>VIDD</i>	Ventilator-Induced Diaphragmatic
	Dysfunction

List of Tables

Table No.	. Title	Page No.
Table 1:	LUS features in RDS	31
Table 2:	The basic patterns in different respira disorders in neonates	
Table 3:	Downes Score	63
Table 4:	Ventilatory Settings at Which Extuba Should Be Considered in Infants	
Table 5:	Characteristics of the studied patients.	80
Table 6:	Laboratory data of the studied patient initiation of ventilation:	
Table 7:	Outcome of the studied patients:	81
Table 8:	Comorbidities which occurred in studied patients	
Table 9:	Comparison between S" and "F" groregarding demographic data	
Table 10:	Comparison between S" and "F" groregarding their laboratory data initiation of ventilation	on
Table 11:	Comparison between "S" and "F" groregarding data on ventilation	-
Table 12:	Comparison between "S" and "F" groregarding patients outcomes	_
Table 13:	Comparison between "S"and "F" groregarding comorbidities	
Table 14:	Comparison between "S" and "F" groon initiation of ventilation as regards and PvCO ₂ , ventilator settings, X findings	pH ray

Tist of Tables cont...

Table No	. Title	Page No.
Table 15:	Comparison between success "S" and groups as regard pH and PvCO ₂ ventilator settings pre-extubating patie	and
Table 16:	Comparison between "S" and "F" greats as regard LUS score, diaphrel ultrasound findings and SBT priorextubation	agm r to
Table 17:	Comparison between "S" and "F" groas regard pH and PCO ₂ , ventile settings, X ray findings post-extubation	ator
Table 18:	LUS score on initiation of ventilation, extubation and post-extubation	-
Table 19:	Comparison of LUS score on initiation ventilation, pre-extubation and pre-extubation in each group	oost-
Table 20:	Right diaphragm expiration thickness initiation of ventilation, pre-extubation and post-extubation in each group	ition
Table 21:	Right diaphragm inspiration thickness the 2 groups on initiation of ventilate pre-extubation and post-extubation each group	tion, in
Table 22:	Left diaphragm expiration thickness initiation of ventilation, pre-extubation and post-extubation in each group	ition
Table 23:	Left diaphragm inspiration thickness initiation of ventilation, pre-extubation in each group	tion

Tist of Tables cont...

Table No	. Title	Page No.
Table 24:	Validity of calculated cut off values of score, left diaphragm expiration inspiration thickness pre-extubation predict success of weaning	and n to
Table 25:	Validity of SBT to predict succe extubation	
Table 26:	Correlation of LUS score and diaphrultrasound parameters in all stupatients prior to extubation	ıdied

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Papers published on lung ultrasourneonatology in 2006 and 2016	
Figure 2:	Neonatal normal LUS characteristics	21
Figure 3:	Chest ultrasound examination in a h	•
Figure 4:	B-line, confluent B-line, and al interstial syndrome (AIS)	
Figure 5:	Compact B-lines	24
Figure 6:	LUS examination showing small hyperechogenic artifacts reflected from "pleural line" and progress caudally for mm as a comet tail	m the a few
Figure 7:	Lung consolidation and shred sign	26
Figure 8:	Lung ultrasound findings of MAS in a term neonate	-
Figure 9:	Double lung point	28
Figure 10:	Sandy beach sign and stratosphere sign	29
Figure 11:	The basic patterns in different respi	•
Figure 12:	Main LUS findings	32
Figure 13:	The SAFE protocol	47
Figure 14:	New Ballard scoring (Neuromu maturity)	
Figure 15:	New Ballard scoring (Physical maturity	·)65
Figure 16:	Right upper anterior region lung ultra for one of the patients of the success prior to extubation, showing good aerat	group

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 17:	Right upper anterior region lung ult for one of the patients of the failur prior to extubation, showing poor aera	e group
Figure 18:	Sonographic view of right and left dia from the current study	
Figure 19:	Comparison between "S" and "F" gr regard of patients' mortality	
Figure 20:	Comparison between "S" and "F" gr regard PEEP, PIP and MAP on initi ventilation	iation of
Figure 21:	Comparing between "S" and "F" gr regard MAP pre-extubating the patien	
Figure 22:	Comparing between "S" and "F" gr regards the FIO ₂ before-extubating pa	_
Figure 23:	Comparison between "S" and "F" gr regards LUS score prior to extubation	-
Figure 24:	Comparison between "S" and "F" gr regards left diaphragm inspiration expiration thickness prior to extubation	on and
Figure 25:	Comparison between "S" and "F" gr regard mode of non-invasive ventilati extubation	on post-
Figure 26:	LUS score of studied patients on init ventilation, pre-extubation and extubation	post-
Figure 27:	Right diaphragm expiration the pattern on initiation of ventilation extubation and post-extubation is group.	on, pre- n each

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 28:	Right diaphragm inspiration pattern on initiation of ventilat extubation and post-extubation group.	ion, pre- in each
Figure 29:	Left diaphragm expiration thickness on initiation of ventilation, pre-e and post-extubation in each group	xtubation
Figure 30:	Left diaphragm inspiration thickness on initiation of ventilation, pre-e and post-extubation in each group	xtubation
Figure 31:	Roc curve of LUS score, left despiration and inspiration thicknextubation to predict success of wear	ness pre-

Introduction

Despite many advances in mechanical ventilation and respiratory support, neonatologists lack objective tool to help in decision making for timely weaning (Singh et al., 2018).

Early weaning from ventilation is the key to prevent ventilator-induced lung injury and the long-term complications of prolonged mechanical ventilation in neonates. No universally validated nor accepted measure occurs to determine readiness for weaning. Decisions to extubate are often taken subjectively based on clinical judgment, which lead to extreme variations in extubation practice and adverse effects such as extubation failures, airway injury and increased risk for atelectotrauma (Singh et al., 2018).

Point-of-care sonography definition is an ultrasound examination that the clinician perform and interpret at the bedside (*El-Halaby et al., 2016*). As *Moore and Coople (2011)* speculated the theme of the "ultrasound stethoscope" is moving fast from theory to reality.

Lung ultrasound (LUS) can detect reduction in its parenchymal aeration and decide whether it is of respiratory, cardiac, or diaphragmatic origin. This reduction is quantified through lung ultrasound score, a scale which values range from 0 to 36 points, calculated from the sum of the grades assigned

to different aeration patterns observed in every examined area of the lung (Llamas-Álvarez et al., 2017).

The use of ultrasound in adults for visualization of the diaphragm is well established. In the last 15 years, several indices of diaphragm function have been established for patients on mechanical ventilation to evaluate diaphragmatic dysfunction, to track changes in diaphragmatic function and thickness over time, and to assess if these indices are useful to predict successful weaning from mechanical ventilation (Turton et al., 2019).

Ultrasound is bedside used for evaluation diaphragmatic excursion and thickness in children, which can help pediatricians and intensivists verify a normal moving diaphragm (El-Halaby et al., 2016).

The objectives of this study were:

1. To determine whether lung ultrasound score and diaphragm ultrasound parameters can be used as a predictor for extubation success in neonates

AIM OF THE WORK

2. To compare between lung and diaphragm ultrasound versus spontaneous breathing trial to predict extubation failure.