AIN SHAMES UNIVERSITY FACUITY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT PUBLIC WORKS SECTION

Applications of Anaerobic Baffled Reactor in Wastewater Treatment Using Agriculture Wastes

A Thesis

submitted to the Faculty of Engineering Ain Shams University for the Fulfillment of the Requirement of M.Sc. degree in Civil Engineering

By

Aya Mohamed Osman Hassan

B.Sc. in civil Engineering Faculty of Engineering – Ain Shames University - Cairo, Egypt

Supervisors

Prof. Dr. Mohamed Ali Ahmed Fergala

Professor of Sanitary & Environmental Engineering EGYPT, Cairo, Ain Shams University, Faculty of Engineering

Prof. Dr. Walid Abd El-Azim Ibrahim El-Barky

Professor of Sanitary & Environmental Engineering EGYPT, Alexandria, Alexandria University, Faculty of Engineering

Dr. Hossam Mostafa Hussien Ahmed

Associate Professor of Sanitary & Environmental Engineering EGYPT, Cairo, Ain Shams University, Faculty of Engineering

AIN SHAMES UNIVERSITY FACUITY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT PUBLIC WORKS SECTION

Applications of Anaerobic Baffled Reactor in Wastewater Treatment Using Agriculture Wastes

A Thesis For The M.Sc. Degree in Civil Engineering (SANITARY & ENVIRONMENTAL ENGINEERING)

Presented by

Aya Mohamed Osman Hassan

B.Sc. in Civil Engineering Faculty of Engineering – Ain Shams University – Cairo, EGYPT

THESIS APPROVAL

Examiners Committee:	Approved
Prof. Dr. Usama Fathy Mahmoud Mohamed, Professor of Sanitary Engineering & Head of Civil Eng. Dept. Shebin El Kom Faculty of Engineering, El-Azhar University	
Prof. Dr. Mohamed EL Hosseiny EL Nadi, Professor of Sanitary & Environmental Engineering Faculty of Engineering Ain Shams University	
Prof. Dr. Mohamed Ali Ahmed Fergala, Professor of Sanitary & Environmental Engineering Faculty of Engineering Ain Shams University	

AIN SHAMES UNIVERSITY
FACUITY OF ENGINEERING
CIVIL ENGINEERING DEPARTMENT
PUBLIC WORKS SECTION

Applications of Anaerobic Baffled Reactor in Wastewater Treatment Using Agriculture Wastes

A Thesis For The M.Sc. Degree in Civil Engineering (SANITARY & ENVIRONMENTAL ENGINEERING)

Presented by

Aya Mohamed Osman Hassan

 $B.Sc.\ in\ Civil\ Engineering\\ Faculty\ of\ Engineering-Ain\ Shams\ University-Cairo,\ EGYPT$

THESIS APPROVAL

Supervisors Committee:	Approved
Prof. Dr. Mohamed Ali Ahmed Fergala Professor of Sanitary & Environmental Engineering Faculty of Engineering Ain Shams University	
Prof. Dr. Walid Abd El-Azim Ibrahim El-Barky Professor of Sanitary & Environmental Engineering Faculty of Engineering Alexandria University	
Dr. Hossam Mostafa Hussien Ahmed Professor of Sanitary & Environmental Engineering Faculty of Engineering Ain Shams University	

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works Faculty of Engineering, Ain Shams University.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - ---/-- /2019

Signature: - -----

Name: - Aya Mohamed Osman Hassan

Dedication

This thesis is dedicated to those who contributed to educating, raising and supporting me to be able to accomplish in this picture.

A special dedication to

MY SUPPORTIVE PARENTS

and to

My wonderful Sisters and Relatives

and finally special dedication to

MY LOVELY HUSBAND

for encouraging me to complete this work and for always being there for me.

ACKNOWLEDGMENT

The author is indebted to **Prof. Dr. Mohamed Ali Ahmed Fergala** for his excellent supervision and valuable suggestions and discussions during every stage of this investigation.

The author is thankful to **Prof. Dr. Mohamed El Hosseiny El Nadi** for his excellent supervision and valuable suggestions and discussions during every stage of this investigation.

The author is appreciative to **Dr. Hossam Mostafa Hussien Ahmed** for his excellent advice and discussion during the whole period of this research.

The author is grateful to **Dr. Walid Abd El-Azim Ibrahim El-Barky** for his careful supervision of this work.

The author also expresses his grateful to the staff of sanitary engineering laboratory, Faculty of Alexandria University, for their assistance during the experiments.

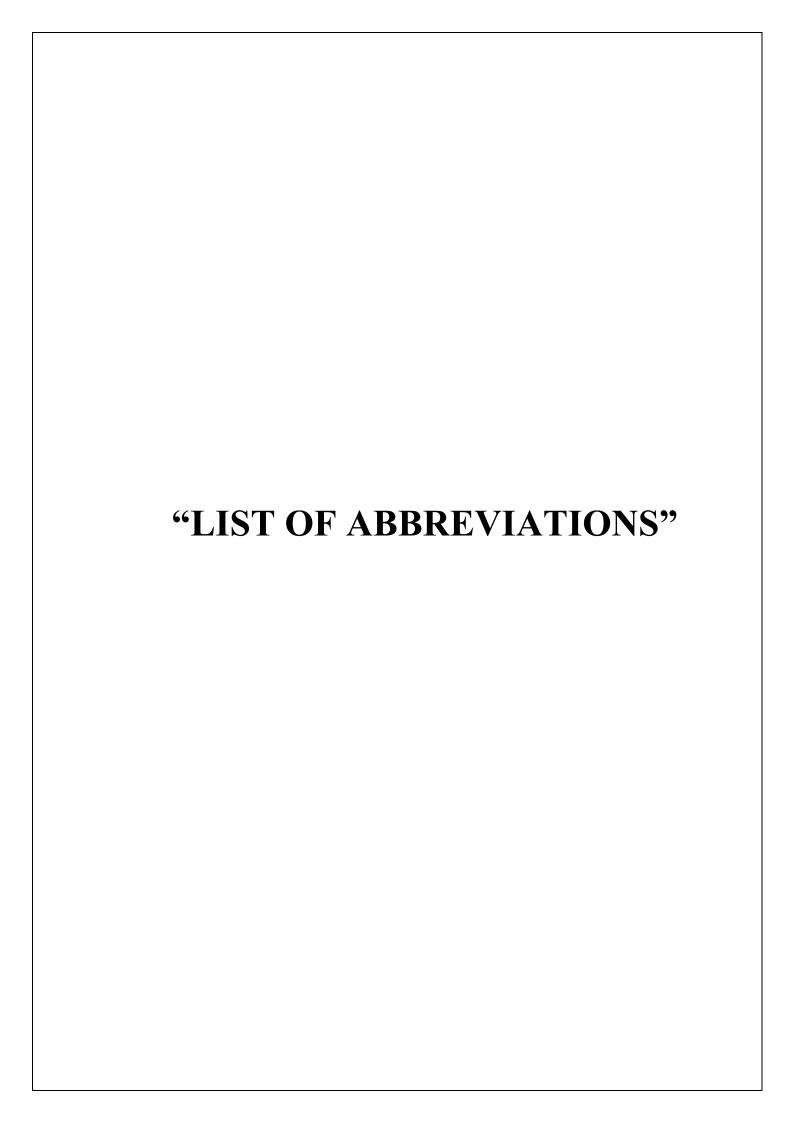
Finally, the author dedicates this thesis to her parents and her husband

ABSTRACT

Egypt and some developing countries are facing a shortage of water needs, so it is necessary to develop low cost technology to suit these countries and optimize the use of surrounding water. Achieving high efficiencies in anaerobic baffled reactor (ABR) for reducing chemical oxygen demand (COD) has always been an outstanding challenge for most researchers as most experiments focus on using fibers in ABR to reduce COD. In this paper a new material was introduced as a replacement for fibers which is the agricultural waste such as palm fibers and ficus trees. The Effect of using agricultural wastes on the performance of the (ABR)

in reducing COD was tested for four different stages (start-up, steady state, shock and final). Both palm fibers and ficus trees samples achieved higher COD removal efficiency as compared to previous studies. The palm fiber samples achieved the highest COD removal efficiency in the four stages as compared to the ficus tree samples.

An exploration regarding the applicability, development and possible future presentation of the an-aerobic baffled reactor (ABR) for the wastewater treatment has been carried out. The reactor design has been established since early 1980s and has several benefits compared to well-established systems. It contains, good flexibility to organic loading and hydraulic, virtuous biomass retaining time, sludge yield reduces, also capacity towards partially separate between different stages for an-aerobic process. The slow rate of changes for populations of bacteria allowing well advanced resistance to alternate the environmental parameters for instance pH and temperature and protection against contaminated materials. There are many alterations such as insertion of an-aerobic polishing stage, resulting in a reactor which can treat difficult wastewaters which now require many units, eventually expressively reducing capital cost. The main idea of the study is to investigate the behavior of these reactors and prove the use of biofilm in refining treatability, to promote the use of both type of biofilm, i.e. ficus fiber and palm fiber. Several important factors have been worked out i.e. temperature, no. of baffles in the reactor, shape of baffled and location of reactor in order to avoid lighting. For all the tested reactors, influent and effluent COD concentration, influent and effluent pH, temperature in reactor and flow rate, in all reactor stage (start-up, steady state, shock load and final stage), pH in all partition from reactors during shock load stage were examined. Results discovered the "ABR C" scenario gave the highest COD % removal as compared to other two scenarios. Simple experimental arrangement was used to see the treatability feature of synthetic wastewater. when tested under altered COD (500 - 1000 and 2000 mg/l) with flow rate 38 l/d and pH value 8.5. pH effect on treatability was explored too.


Keywords: Anaerobic baffled reactor, organic load rete, Biomass, hydraulic retention time, Biodegradation.

CONTENTS

Subject	page
CHAPER I: INTROUDUCTION	
1.1 General	1
1.2 PROBLEM IDENTIFICATION	1
1.3 OBJECTIVES OF CURRENT RESEARCH	2
1.4 SCOPE OF WORK	2
1.4.1 Experimental work	2
1.4.2 Analytical work	2
1.5 Contents of the Thesis	3
CHAPTER II: LITERATURE REVIEW	
2.1 Introduction	4
2.2 Wastewater treatment technologies	4
2.3 Anaerobic treatment	5
2.3.1 The rationale for anaerobic treatment	5
2.3.2 General design considerations for anaerobic treatment process	7
2.3.2.1 characteristics of the wastewater	7
2.3.2 .2 organic concentration and temperature	8
2.3.2.3 Solid retention time	8
2.3.3 Anaerobic suspended growth processes	8
2.3.4 Anaerobic sludge blanket processes	9
2.3.4.1 up-flow sludge blanket reactor process	9
1- Wastewater Characteristics	10
2- Volumetric Organic Loadings	10
2.3.4.2 Anaerobic Baffled Reactor	11

2.3.4.3 Anaerobic migrating blanket reactor	12
2.3.5 Attached growth anaerobic processes	12
2.4 Hybrid An-aerobic Baffled Reactor	13
Chapter III: MATERIAL AND METHODS	
3.1 Introduction	23
3.2 Pilot Plant	23
3.3 Experimental Work:	23
3.4 Design of Reactors	24
3.5 Operation of the reactors	29
3.5.1 Start-up stage	30
3.5.2 Steady state stage (operation stage)	32
3.5.3 Shock load stage	32
3.5.4 Return steady state stage	32
3.6 Measurements and analysis methods	33
3.6.1 Chemical oxygen demand (COD)	33
3.6.2 pH-Value	35
3.6.3 Suspended Solid (SS), MLSS and MLVSS	35
3.6.4 Mixed liquor Volatile Suspended Solids (MLVSS)	36
3.6.5 Food to microorganisms Ratio F/M:	36
CHAPTER IV: RESULTS AND DISCUSSIONS	
4.1 Introduction	37
4.2 The first scenario (conventional reactor).	37
4.2.1 Start-up and Acclimation	37
4.2.2 Steady state	40
4.2.3 Shock load Stage	43
4.2.4 Final stage	48

l l	
4.3 The second scenario (ficus fiber -film). (Reactor B)	51
4.3.1 Start-up and Timeline	51
4.3.2 Steady state	53
4.3.3 Shock load Stage	55
4.3.4 Final stage	63
4.4 The third scenario (palm Fiber -film). (Reactor C)	66
4.4.1 Start-up and Timeline	66
4.4.2 Steady state	68
4.4.3 Shock load Stage	71
4.4.4 Final stage	77
4.5 Comparison between three scenarios	80
CHAPTER VI: SUMMARY AND CONCLUSIONS	
5.1 Summary	89
5.2 Conclusions:	91
5.3 Suggestions for Further Research	91
REFERENCES	92

ABBREVIATIONS

"A = Cross-sectional area

ABR = An-aerobic Baffled Reactor,

ABR(A) = Conventional an-aerobic baffled reactor,

ABR (**B**) = An-aerobic baffled reactor with focus fiber media, **ABR** (**C**) = An-aerobic baffled reactor with palm fiber media,

ACF = Activated Carbon Fiber AD = Anaerobic Digestion

ADS = Anaerobically Digested Sludge AHR = An-aerobic Hybrid Reactor

AMBR = An-aerobic Migrating Blanket Reactor

AS = Activated Sludge

ASB = Anaerobic Sludge Blanket ASBR = Anaerobic Sludge Bed Reactor

ASR = Anaerobic Stage Reactor **BOD** = Biochemical Oxygen Demand

CABR = Carrier Anaerobic Baffled Reactor

COD = Chemical Oxygen DemandCW = Chemical Wastewater

DI-ABR= Divisional Influent Anaerobic Baffled Reactor

E = Effectiveness factor

F/M = Food to microorganism's ratio

GF = Glass Fiber

GSS = Gas Solids Separator

HFCWs= Horizontal Flow Constructed Wetlands

 $\mathbf{H}_{\mathbf{G}}$ = Reactor height to accommodate gas collection and storage

H_L = Reactor height based on liquid volume

HRT = Hydraulic Retention Time **H**_T = Total reactor height

HUASB= Hybrid Up-flow Anaerobic Sludge Blanket reactor

MLSS = Mixed Liquor Suspended Solids

MLVSS = Mixed Liquor Volatile Suspended

Na = Not Available

NRC = National Research Center

°C = Temperature

OMW = Olive Mill Wastewater
OLR = Organic Loading Rate
pH = Hydrogen ion concentration

PVA = Polyvinyl Alcohol **PVAF** = Polyvinyl Alcohol Fiber

Q = Flow rateRF = Rumen FluidSDB = Sludge Drying Bed

SI-ABR= Single Influent Anaerobic Baffled Reactor

SLR = Sludge Loading Rate

 S_0 = Influent COD, kg COD/m³BOD

SRT = Solid Retention Time
 SS = Suspended Solids
 SW = Synthetic Wastewater

T = Time

TACR = Thermophilic Anaerobic Contact Reactor

TDS = Total Dissolved Solids

TN = Total Nitrogen

TOC = Total Organic Carbon

TS = Total Solids

TSS = Total Suspended Solid

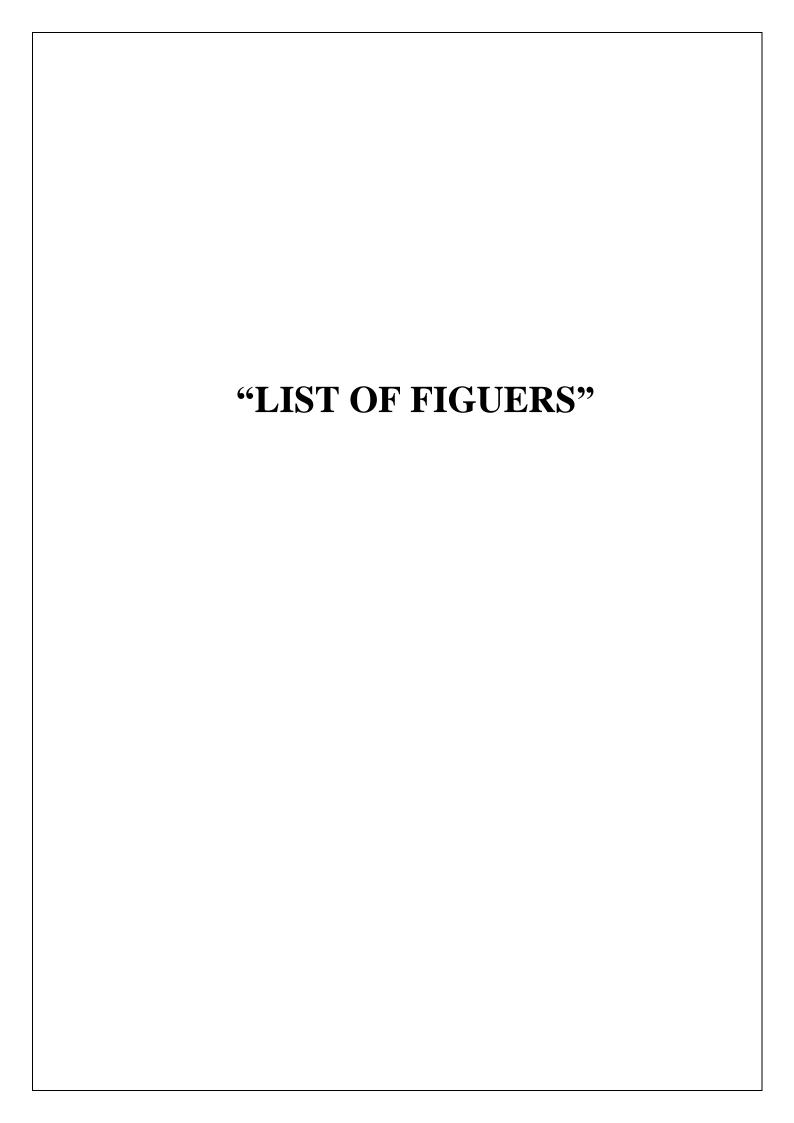
UASB = Up-flow Anaerobic Sludge Blanket

UASR = Up-flow Anaerobic Sponge Reactor

VFA = Volatile Fatty Acid

VFCWs = Vertical Flow Constructed Wet lands

 V_L = Total liquid volume of reactor


 $\overline{\mathbf{V}}_{\mathbf{n}}$ = nominal (effective) liquid volume of reactor, \mathbf{m}^3

Vs = Volatile Solids

 $\mathbf{V} \mathbf{w} = \text{volume of water}$

WHPCO = Wet Hydrogen Peroxide Catalytic Oxidation

WWTP= Wastewater Treatment Plant"

LIST OF FIGURES

Fig. 2.1 Waste-water treatment unit operation and proc	essed4
Fig 2.1 Series of An-aerobic Waste-water treatment sy	
Fig. 2.2 Type of an-aerobic treatment processes	7
Fig. 2.3 An-aerobic suspended growth treatment process	sses 8
Fig. 2.4 Schematic figure of UASB process & some me	odification8
Fig. 2.5 The Implementation of a reactor in nature Sou	rce: SANIMAS (2005) 11
Fig. 2.6 Schematic views of alternative sludge blanket p	
Fig. 2.7 Up-flow an-aerobic attached growth treatment	reactor12
Fig. 2.8 Representation the diagram of a hybrid anaerol	
et al. 2011	
Fig. 2.9 Schematic diagram of the "SCSTR" by Alrawi	et al. 2011 14
Fig. 2.10 Representation the diagram of an experimental	
Fig. 2.11 Graphic the diagram of an experimental set-up	
Fig. 2.12 Profile of (A) COD and (B) BOD concentration	
Fig. 2.13 Schematic view and the flow chart of the TAC	•
Fig. 2.14 Graphic the block diagram of the required treatment	• •
Fig. 2.15 Graphic the diagram of the planning treatment	•
Fig. 2.16 ASR system and flow regime Al-karimiah et a	
Fig. 2.17 Experimental set-up of integrated system (WH	
Gohary et al. 2009	13
Fig. 2.18 Representation the diagram of the "UASB" rea	
Fig. 2.19 Representation the diagram of the "HUASB" r	•
Fig. 2.20 Representation of the anaerobic hybrid reactor	
Fig. 2.21 Single influent ABR (SI-ABR) and Divisional	
2011	
Fig. 2.22 The granular had haffled reactor (GD A DDD) h	01 1.41 0010 00
rig. 2.22 The granular Deu Darrieu reactor (ONADDN) to	y Shanmugam and Akunna. 201022
	y Shanmugam and Akunna. 201022 acking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with pa	cking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with pa	cking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with particle by Feng et al. 2009	cking made of hollow-sphere bamboo 22 24
Fig. 2.23 Schematic representation of the CABR with particle by Feng et al. 2009	cking made of hollow-sphere bamboo 22 24
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo 22 24 26 26
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo 22 24 24 26 26 26 26 26 26 26 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo 22 24 26 26 26 27
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo 22 24 26 26 26 27 cter treatment) 28
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo ———————————————————————————————————
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo 22
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo 22 24 26 26 26 27 27 28 r treatment) 29 laboratory apparatus, general view 30 at sample in vial, C, Digestion of the
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo
Fig. 3.1 An-aerobic baffled reactor, all dimensions in m Fig. 3.2 Sludge in reactor = 1/2 V w Fig. 3.3 Temperature regulator Fig. 3.4 Installation of the system and method of feeding Fig. 3.5 Tank feeding, and constant head tank Fig. 3.6 Shape of the sponge (A. Before treatment, B. Afte Fig. 3.7 Shape of the fiber (A. Before treatment, B. Afte Fig. 3.8 Reactor A, reactor B and reactor C systems and Fig. 3.9 Steps of test (COD) (A, sample collection, B, pu sample by heating, and D, Read result COD) Fig. 3.10 pH measurement	cking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	teking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with particle by Feng et al. 2009	teking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	teking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	teking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo
Fig. 2.23 Schematic representation of the CABR with partial by Feng et al. 2009	cking made of hollow-sphere bamboo