

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer Engineering and Software Systems

Semi-supervised Language-independent Sentiment Analysis

A Thesis submitted in partial fulfillment of the requirements of Master of Science in Electrical Engineering (Computer Engineering and Systems)

by

Mohammad Hassan Hanafy

Bachelor of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Cairo University, 2012

Supervised By

Prof. Hazem Mahmoud Abbas Prof. Mahmoud Ibrahim Khalil

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Computer Engineering and Systems

Semi-supervised Language-independent Sentiment Analysis

by

Mohammad Hassan Hanafy

Bachelor of Science in Electrical Engineering Electronics Engineering and Electrical Communications Faculty of Engineering, Cairo University, 2012

Examiners' Committee

Name and affiliation	Signature		
Prof. Hassen Taher Dorrah			
Electrical Power and Machines Engineering	• • • • • • • • • • • • • • • • • • • •		
Faculty of Engineering, Cairo University.			
Prof. Hoda Korashy Mohamed Computer Engineering and Systems			
Faculty of Engineering, Ain Shams University.			
Prof. Hazem Mahmoud Abbas Computer Engineering and Systems			
Faculty of Engineering, Ain Shams University.			
Dr. Mahmoud Ibrahim Khalil			
Computer Engineering and Systems			
Faculty of Engineering, Ain Shams University.			

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University. The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Mohammad Hassan Hanafy
Signature
Date: 18 July 2019

Researcher Data

Name: Mohammad Hassan Hanafy Mahmoud

Date of Birth: 10/12/1990 Place of Birth: Cairo, Egypt

Last academic degree: Bachelor of Science
Field of specialization: Electrical Engineering
University issued the degree: Cairo University

Date of issued degree: 2012

Current job : Senior Software Engineer

Thesis Summary

Sentiment analysis plays an important role in research and industry as extracting the opinions of people could be beneficial in several domains. Millions of active users express their opinions and sentiments daily in blogs, social networks and different other platforms. Twitter allows users from all the globe to express their feelings and opinions freely in a unit of text called tweet. With millions of tweets get published daily, twitter has attracted many researchers and organizations to exploit its data.

Early works on sentiment analysis have used rule based approaches then machine learning classifiers were introduced as it surpassed the former one, but most of these works have been built for a certain language or certain domain. Being a global platform that is used in almost all the countries creates new challenges to be faced. Users express their sentiments with different languages, tend not to use the formal language, do not stick to grammar rules, use slang words and new expressions are continuously added. that kept the door open for further innovations and systems to solve these problems.

In this thesis, we build a semi-supervised language-independent technique that does not depend on any feature of a certain language. It uses emotions that is used heavily in twitter as heuristic labels to build the training set from raw tweets. Statistical and unsupervised approaches i.e bag of words and word2vec are used as feature representation for the classifiers.

Two main models are proposed in this work, both combine typical and deep learning classifiers i.e SVM, Max.Ent. ,CNN and LSTM. The first model used more core classifiers than the second one, and focused on tuning the combination of them to overcome their limitations. The second model used fewer classifiers but focused more on the feature representation, specially word2vec and how to make use of its models i.e skip-gram and continuous bag of words. The proposed models are very efficient regards memory and time as it used only 10% of training dataset compared to other approaches on the same test dataset. The results also show that both approaches are performant as they achieve the state-of-the-art accuracy of 86.37%.

Key words: Sentiment Analysis, NLP, Deep Learning, Machine Learning, Twitter

Acknowledgment

Mohammad Hassan Hanafy Computer Engineering and System Faculty of Engineering Ain Shams University Cairo, Egypt July 2019

Abstract

Sentiment analysis plays an important role in research and industry as extracting the opinions of people could be beneficial in several domains. Millions of active users express their opinions and sentiments daily in blogs, social networks and different other platforms. Twitter allows users from all the globe to express their feelings and opinions freely in a unit of text called tweet. With millions of tweets get published daily, twitter has attracted many researchers and organizations to exploit its data.

Early works on sentiment analysis have used rule based approaches then machine learning classifiers were introduced as it surpassed the former one, but most of these works have been built for a certain language or certain domain. Being a global platform that is used in almost all the countries creates new challenges to be faced. Users express their sentiments with different languages, tend not to use the formal language, do not stick to grammar rules, use slang words and new expressions are continuously added. that kept the door open for further innovations and systems to solve these problems.

In this thesis, we build a semi-supervised language-independent technique that does not depend on any feature of a certain language. It uses emotions that is used heavily in twitter as heuristic labels to build the training set from raw tweets. Statistical and unsupervised approaches i.e bag of words and word2vec are used as feature representation for the classifiers.

Two main models are proposed in this work, both combine typical and deep learning classifiers i.e SVM, Max.Ent. ,CNN and LSTM. The first model used more core classifiers than the second one, and focused on tuning the combination of them to overcome their limitations. The second model used fewer classifiers but focused more on the feature representation, specially word2vec and how to make use of its models i.e skip-gram and continuous bag of words. The proposed models are very efficient regards memory and time as it used only 10% of training dataset compared to other approaches on the same test dataset. The results also show that both approaches are performant as they achieve the state-of-the-art accuracy of 86.37%.

Key words: Sentiment Analysis, NLP, Deep Learning, Machine Learning, Twitter

Contents

C	ontei	nts	xi
Li	st of	Figures	χvi
Li	st of	Tables	vii
A	bbre	viations	vii
Sy	mbc	ols	xix
1	Inti	roduction	1
	1.1	Definitions	2
		1.1.1 Sentiment	2
		1.1.2 Sentiment Analysis	2
	1.2	Twitter Sentiment Analysis	3
		1.2.1 Challenges	3
	1.3	Thesis Contribution	4
	1.4	Thesis Organization	4
		Chapter 2: Literature Review:	4
		Chapter 3: Theory and Algorithms:	5
		Chapter 4: Proposed Models:	5
		Chapter 5: Conclusions and Future work:	5
2	Lite	erature Review	6
	2.1	General Sentiment Analysis	7
	2.2	Twitter Sentiment Analysis	8
	2.3	Deep Learning Sentiment Analysis	9
3	The	eory and Algorithms	12
	3.1	Methodology	14
		3.1.1 Data processing	14
		3.1.2 Auto-Labeling	16
		3.1.3 Feature Extraction and dimension reduction	17
		3.1.3.1 Bag of Words	17
		3.1.3.2 Term Frequency-Inverse Document Frequency	18
		3.1.3.3 Word2Vec	18
		3.1.4 Classifiers	21
		3 1 4 1 Support Vector Machine	21

Table of Contents xiv

			2.1.4.2 Marinaum Entrana	1
			3.1.4.2 Maximum Entropy	
			3.1.4.3 Long-Short Term Memory	
			3.1.4.5 Voting Ensembles	
	3.2	Evnor	mentation Tools	
	3.2	Exper	Data processing	
			Auto-labeling	
		3.2.1	Feature Extraction	
		3.2.1	BOW with Tf-idf	
				0
		3.2.2	Classifiers	
		3.4.4	Support Vector Machine	
			Maximum Entropy	
			Long-Short Term Memory	
			Convolutional Neural Networks	
			Convolutional Neural Networks	1
4	Mo	dels	3	2
	4.1	Datas	ets	6
		4.1.1	STS dataset	6
		4.1.2	CIKM dataset	6
	4.2	The E	xperimental Protocol	7
	4.3		Models	8
		4.3.1	Model 1: BOW with Tf-idf	
			4.3.1.1 Model	
			4.3.1.2 Motivation	8
			4.3.1.3 Results	9
		4.3.2	Model 2: Aggregation of word2vec	0
			4.3.2.1 Model	0
			4.3.2.2 Motivation	1
			4.3.2.3 Results	1
		4.3.3	Model 3: LSTM	1
			4.3.3.1 Model	1
			4.3.3.2 Motivation	2
			4.3.3.3 Results	3
		4.3.4	Model 4: CNN	3
			4.3.4.1 Model	3
			4.3.4.2 Motivation	4
			4.3.4.3 Results	4
	4.4	Propo	sed Models	5
		4.4.1	Model 1: Weighted Voting ensemble	5
			4.4.1.1 Motivation	5
			4.4.1.2 Model	6
			4.4.1.3 Results	6
		4.4.2	Model2: Rule based voting	0
			4.4.2.1 Motivation	
			4.4.2.2 Model	
			4.4.2.3 Results	

Table of Contents xv

	4.5	Previo	us Results
	4.6	Analys	sis
			Word2vec Embedding size and Training data size 55
			BOW window size
			Text size
			Training data size
	4.7	Propos	sed Models Contributions
	4.1	4.7.1	
		-	Memory
		4.7.2	Time
5	Con	clusion	ns and Future Work 60
	5.1	Conclu	sions
		5.1.1	Semi-supervised
		5.1.2	Language Independence
		5.1.3	Models
		5.1.4	Result
	5.2	•	e Work
	0.2	5.2.1	Data
		5.2.1 $5.2.2$	Classifiers
		5.2.3	Languages
		5.2.4	Architecture

65

Bibliography