

Ain Shams University Faculty of Engineering Mechanical Power Engineering Department

PERFORMANCE OF REFRIGERATION SYSTEM USING ENVIRONMENTALLY FRIENDLY REFRIGERANT

A Thesis Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mechanical Engineering

By

Tamer Mahmoud Aly Hassan
Bachelor of Science in Mechanical Engineering
Supervised by

Prof. Dr. Nabil Abdel-Aziz Mahmoud

Mechanical Engineering Department
Faculty of Engineering
Ain Shams University

Dr. Mohamed Saad El-Din El-Morsi

Department of Mechanical Engineering
School of Sciences and Engineering
The American University in Cairo (AUC)

Dr. Mohamed Hamdy Salama

Miraco Carrier - Misr Refrigeration & Air Condition

Egypt

Egypt- Cairo 2019

LIST OF PUBLICATIONS

Tamer M. Hassan, M.S. El-Morsi, N. A. Mahmoud, "Energy performance of Hydrocarbon Refrigerant as a possible alternative refrigerant to R134a in domestic refrigerators," Journal of Al Alzher University Engineering Sector, JAUES, ISSN: 1110-6409, 2018

CERTIFICATION STATEMENT

This thesis is submitted in partial fulfillment for the degree of Master of Science in Mechanical Power Engineering to the Faculty of Engineering, Ain Shams University.

The work included in this thesis was carried out by the author, primarily at the laboratories of the Mechanical Engineering Department, Faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for degree or qualifications at any other universities.

Signature
Tamer Mahmoud Alv Hassan

RESEARCHER DATA

Name : Tamer Mahmoud Aly Hassan

Date of birth : 14/10/1979

Place of birth : CAIRO-EGYPT

Academic degree : Bachelor degree in mechanical power and energy

Field of specialization : Electromechanical projects-army engineering

authority

University issued the degree: Military technical college.

Date of issued degree : 2001

Current job : Officer in the engineering authority for army forces

BOARD OF SUPERVISORS

The undersigned certify that they have read and recommended to the Faculty of Engineering, Ain Shams University, for acceptance a thesis entitled "Performance of Refrigeration System Using Environmentally Friendly Refrigerant", submitted by Tamer Mahmoud Aly Hassan, in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mechanical Engineering.

1. Prof. Dr. Nabil Abdel-Aziz Mahmoud

Mechanical Power Engineering Department Faculty of Engineering Ain Shams University

2. Dr. Mohamed Saad Eldin El-Morsi

Department of Mechanical Engineering School of Sciences and Engineering The American University in Cairo (AUC)

3. Dr. Mohamed Hamdy Salama

Miraco Carrier - Misr Refrigeration & Air Condition Egypt

Date: / /2019

EXAMINERS COMMITTEE

The undersigned certify that they have read and recommended to the Faculty of Engineering, Ain Shams University, for acceptance a thesis entitled "Performance of Refrigeration System Using Environmentally Friendly Refrigerant", submitted by Tamer Mahmoud Aly Hassan, in Partial Fulfillment for the Requirements of the Degree of Master of Science in Mechanical Power Engineering.

	Signature
1. Prof. Dr. Salah Mahmoud El-Haggar Department of Mechanical Engineering School of Sciences and Engineering The American University in Cairo (AUC)	••••••
2. Prof. Dr. Mahmoud Abdel Rasheed Nosseir Mechanical Power Engineering Department Faculty of Engineering Ain Shams University	•••••
3. Prof. Dr. Nabil Abdel-Aziz Mahmoud Mechanical Power Engineering Department Faculty of Engineering Ain Shams University	•••••
4. Dr. Mohamed Saad el Din El Morsi Department of Mechanical Engineering School of Sciences and Engineering The American University in Cairo (AUC)	

Date: / /2019

ABSTRACT

The aim of this study is to experimentally investigate the usage of liquefied petroleum gas (LPG)

as a substitute refrigerant for R134a in a household refrigerator and identify the most suitable

charge and capillary tube length. The gravimetric composition of the locally available LPG by

weight is (R290- 25.98%, R600-41.17%, R00a-9.99%, R601a-0.64%, R170-0.11%, R744-0.01%,

butene-22.10%), Appendix D.

Five different charges at which LPG and R134a are charged and tested. The charges are 40 g and

50 g for LPG and 130 g, 150 g and 170 g for R134a. Four capillary tubes of 0.7 mm inner

diameter, 1.9 mm outer diameter and 1.5 m, 2 m, 2.5 m and 3 m length each are used during

experimentation at different thermostat positions (1, 2, and 3).

REFPROP-6.0 software is used to determine the thermodynamic properties of LPG and R134a.

The results indicate that maximum COP and minimum irreversibility for R134a is attained at a

charge of 130g, capillary tube length 1.5m and consequently the maximum exergy efficiency. On

the other hand, the best performance for LPG is attained at a charge of 50 g and capillary tube

length 1.5m. Relative to R134a, LPG has a COP and exergy efficiency that are lower by an

average of 24% and 49%, respectively, within the range studied. However, LPG consumes less

power and has more on time ratio compared to R134a. Also, LPG is cheap, available in great

amounts and has a very low GWP and zero ODP.

Key words: Refrigerant, Hydrocarbon, R134a, LPG, Energy and Domestic refrigerator

VI

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors; **Prof. Dr. Nabil Abdel-Aziz Mahmoud**, **Dr. Mohamed Saad Eldin El-Morsi** and **Dr. Mohamed Hamdy Salama**, for their supervision, guidance and continuous support during the course of the research work presented in this thesis.

Thanks for the technical staff of the air conditioning and refrigeration laboratory, Ain Shams University, whom helped me in constructing the test rig.

I would like to express my sincere appreciation and gratitude to my father, late **Prof. Dr.**Mahmoud Aly Hassan, may God bless his soul, for his constant encouragement and his guidance that aims me to study this work.

TABLE OF CONTENTS

List of Publications	i
Certification Statement	ii
Researcher Data	iii
Board of Supervisors	iv
Examiners Committee	v
ABSTRACT	VI
Acknowledgements	VII
List of Figures	XI
List of Tables	XIV
Symbols and Abbreviations	XV
Nomenclature	XV
Greek letters	XV
Subscripts	XV
Abbreviations	XVI
Chapter 1 Introduction	1
1.1. Refrigerants History	1
1.2. CFC and HCFC Refrigerants	1
1.3. HFCs Refrigerants	1
1.4. HFC Refrigerants and their Substitutes	2
1.5. Hydrocarbons (HCs) Refrigerants	2
Chapter 2 Literature Survey	4
2.1. Replacement of R12 with HC	4
2.2. Alternative Refrigerants to R134a system	11
2.3. Compatible of HC with Oil, Filters and Compressors Materials	15
2.4. Flammability and Safety of HC	16
2.5. Scope of the Present Work	18

Chapt	ter 3 Experimental Test Rig	19
3.1. C	Overview	19
3.2. R	Refrigeration Cycle	22
	3.2.1. Compressor	23
	3.2.2. Evaporator	23
	3.2.3. Condenser	23
	3.2.4. Cabin	net 23
	3.2.5. Filter drier	24
	3.2.6. Capillary tube	24
3.3. R	Refrigeration Cycle Measurements	25
	3.3.1. Flow meter	25
	3.3.2. Pressure transducers, controller and gauges	25
	3.3.3. Temperature sensors	26
	3.3.4. Electrical power supply measurements	27
3.4. C	Control System	27
	3.4.1. Hardware components	27
	3.4.2. Softv	ware 28
3.5. P	Preparation of the Test Apparatus	28
	3.5.1. Piping system	28
	3.5.2. Startup of the system	29
3.6. E	Experimental Procedure	29
	3.6.1. Optimization of refrigerant charge and capillary length	
	3.6.2. On time ratio test.	29
	3.6.3.ergy consumption of the compressor, refrigeration effect & actual	COP 30
Chapt	ter 4 Calculations Procedure	31
4.1. Iı	ntroduction	31
42 T	Theoretical Analysis	32
1.2. 1	4.2.1. Evaporator	
	4.2.2. Compressor work	
	4.2.3. Condenser	
	4.2.4. Expansion valve	
	4.2.5 Liquid-suction heat exchanger	34

4.3. Comparison between Thermodynamic Properties of R134a and LPG	34
4.3.1. Pressure-temperature variation	35
4.3.2. Specific volume	36
4.3.3. Latent heat	38
4.3.4. Dynamic viscosity	38
Chapter 5 Results and Discussion	40
5.1. Introduction	40
5.2. Refrigerant Mass Flow Rate	40
5.3. Rate of Heat Transfer at Evaporator	46
5.4. Rate of Heat Transfer at Condenser	51
5.5. Compressor Work	56
5.6. Coefficient Of Performance, COP	61
5.7. Pressure Ratio (Pr)	66
5.8. Volumetric Refrigeration Capacity, VRC	71
5.9. ON Time Ratio	76
5.10. Exergetic Efficiency	81
5.11. Total irreversibility	86
5.12. Uncertainty Analysis	91
Chapter 6 Conclusions and Recommendations	92
6.1. Conclusions	92
6.2. Recommendations for Future Work	93
References	94
Appendix A	106
Appendix B	117
Appendix C	125
Appendix D.	129

LIST OF FIGURES

Figure 3-1	Schematic diagram of the test rig	.21
Figure 3-2	Real photo of the test rig	. 22
Figure 4-1	Schematic diagram of a vapor compression refrigeration cycle used in domestic refrigerators	
Figure 4-2	Pressure enthalpy diagram with liquid sub cooling and vapor super heating	.31
Figure 4-3	Pressure-temperature variation	.36
Figure 4-4	Specific volume of the saturated liquid for LPG and R134a	. 37
Figure 4-5	Specific volume of the saturated vapor for LPG and R134a	.37
Figure 4-6	Latent heat of vaporization /condensation of LPG and R134a	.38
Figure 4-7	Dynamic viscosity of saturated liquid for LPG and R134a	. 39
Figure 4-8	Dynamic viscosity of saturated vapor LPG and R134a	. 39
Figure 5-1	Mass flow refrigerant versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	. 42
Figure 5-2	Mass flow refrigerant versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	. 43
Figure 5-3	Mass flow refrigerant versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	. 44
Figure 5-4	Mass flow refrigerant versus thermostat positions for different refrigerant mass charge at capillary tube length 3m	. 45
Figure 5-5	Rate of heat transfer of evaporator versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	. 47
Figure 5-6	Rate of heat transfer of evaporator versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	. 48
Figure 5-7	Rate of heat transfer of evaporator versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	. 49
Figure 5-8	Rate of heat transfer of evaporator versus thermostat positions for different refrigerant mass charge at capillary tube length 3m	. 50
Figure 5-9	Rate of heat transfer for condenser versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	. 52
Figure 5-10	ORate of heat transfer for condenser versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	. 53
Figure 5-1	1Rate of heat transfer for condenser versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	. 54
Figure 5-12	2Rate of heat transfer for condenser versus thermostat positions for different	55

Figure 5-13Rate of work for compressor versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	
Figure 5-14Rate of work for compressor versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	
Figure 5-15Rate of work for compressor versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	
Figure 5-16Rate of work for compressor versus thermostat positions for different refrigerant mass charge at capillary tube length 3m	
Figure 5-17COP versus thermostat positions for different refrigerant mass charge at capillar tube length 1.5m	
Figure 5-18COP versus thermostat positions for different refrigerant mass charge at capillar tube length 2m	
Figure 5-19COP versus thermostat positions for different refrigerant mass charge at capillar tube length 2.5m	
Figure 5-20COP versus thermostat positions for different refrigerant mass charge at capillar tube length 3m	-
Figure 5-21Pr versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	67
Figure 5-22Pr versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	68
Figure 5-23Pr versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	69
Figure 5-24Pr versus thermostat positions for different refrigerant mass charge at capillary tube length 3m	70
Figure 5-25VRC versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	72
Figure 5-26VRC versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	73
Figure 5-27VRC versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	74
Figure 5-28VRC versus thermostat positions for different refrigerant mass charge at capillary tube length 3m	75
Figure 5-29On time ratio versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	
Figure 5-30On time ratio versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	
Figure 5-31On time ratio versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	

Figure 5-32On time ratio versus thermostat positions for different refrigerant mass charge a capillary tube length 3m	
Figure 5-33Exergetic efficiency versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	. 82
Figure 5-34Exergetic efficiency versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	. 83
Figure 5-35Exergetic efficiency versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	. 84
Figure 5-36Exergetic efficiency versus thermostat positions for different refrigerant mass charge at capillary tube length 3m	. 85
Figure 5-37Total irreversibility versus thermostat positions for different refrigerant mass charge at capillary tube length 1.5m	. 87
Figure 5-38Total irreversibility versus thermostat positions for different refrigerant mass charge at capillary tube length 2m	. 88
Figure 5-39Total irreversibility versus thermostat positions for different refrigerant mass charge at capillary tube length 2.5m	. 89
Figure 5-40Total irreversibility versus thermostat positions for different refrigerant mass charge at capillary tube length 3m	.90

LIST OF TABLES

Table 2-1 Compatibility of different lubricants with HC refrigerants, [90]	16
Table 2-2 Properties of some HC refrigerants, [88]	17
Table 2-3 Flammability characteristics of some HC refrigerants, [89]	17
Table 3-1 LPG Compositions by country, [95]	19
Table 3-2 LPG composition studied in the present work, Appendix D	20
Table 3-3 Capillary tube dimensions	24
Table 3-4 Control system connected to sensors and other measuring devices	28
Table 4-1 The thermodynamic states of the refrigeration cycles	31
Table 4-2 LPG composition studied in the present work, Appendix D	35
Table 5-1 Uncertainty of calculated variables	91