

Synthesis of Some New Heterocyclic Systems Containing Nitrogen with Expected Potential Biological Activity

A Thesis for Ph.D. Degree in Organic Chemistry

Presented by

Sandy Samy Samir

(M. Sc.)

Department of Chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
2019

Synthesis of Some New Heterocyclic Systems Containing Nitrogen with Expected Potential Biological Activity

A Thesis Submitted for the Degree of Doctor of
Philosophy in Science
(Organic Chemistry)

Presented by

Sandy Samy Samir

Under supervision

Prof. Dr. Ahmed Said Ahmed Youssef
Professor of Organic Chemistry
Prof. Dr. Magdy Mohamed Hemdan Mohamed
Professor of Organic Chemistry
Prof. Dr. Wael S. I. Abou El-Magd
Professor of Organic Chemistry
Dr. Mohsen Mohamed Kamal Abo El-regal
Associated Professor of Organic Chemistry
Dr. Amira Taher Ali Mohamed
Lecturer of Organic Chemistry

Synthesis of Some New Heterocyclic Systems Containing Nitrogen with Expected Potential Biological Activity

A Thesis for Ph.D. Degree in Organic Chemistry

Presented by Sandy Samir

(B. Sc.)

Thesis Advisors	Thesis Approved
Prof. Dr. Ahmed Said Ahmed Youssef	•••••
Professor of Organic Chemistry, Faculty of	
Science, Ain Shams University.	
Prof. Dr. Magdy Mohamed Hemdan Mohamed	•••••
Professor of Organic Chemistry, Faculty of Science	ce,
Ain Shams University.	
Prof. Dr. Wael S. I. Abou El-Magd	•••••
Professor of Organic Chemistry, Faculty of Science	ce,
Ain Shams University.	
Dr. Mohsen Mohamed Kamal Abo El-regal	•••••
Associated Professor of Organic Chemistry, Facul	lty
of Science, Ain Shams University.	
Dr. Amira Taher Ali Mohamed	•••••
Lecturer of Organic Chemistry	

Head of Chemistry Department Prof. Dr. Ayman Ayoub Abdel-Shafi

Contents

	pages
(Acknowledgement)	
English Summary	I
Introduction	1
Chemistry of 1,2,4-triazines	1
A. Synthesis of 1,2,4- triazine derivatives	2
B. Reactions of 1,2,4- triazine compounds	
1. Reactions of 3-chloro-5,6-diphenyl-1,2,4-triazine	10
a. Reactions with oxygen nucleophiles	10
b. With sodium cyanide	10
c. With sodium hexenyloxide	11
d. With phenols and thiophenols	11
e. Reactions with carbon nucleophiles	12
f. With cyanoacetic acid hydrazide	14
g. Reactions with nitrogen nucleophiles	14
h. With sulfa drugs	15
i. With thiosemicarbazide	15
2. Reactions of 3,5,6-triphenyl-1,2,4-triazine	17
a. Reactions with dienophiles and alkynes	17
b. Reactions with Grignard reagents	18
3. Reactions of 3-cyano-5,6-diphenyl-1,2,4-triazine	19
a. Reactions with Grignard reagents	19
b. Reactions with nitrogen nucleophiles	20
4. Reactions of 3-amino-5,6-diphenyl-1,2,4-triazine	20
a. Diel's alder reaction	20

	b. Cyclization reactions	21
	c. With aldehydes	22
	d. With thiophenol	23
5.	Reactions of 3-hydrazino-5,6-diphenyl-1,2,4-triazine	24
	a. Reactions with pi-acceptors activated carbonitriles	24
	b. Reactions with $\beta\text{-keto}$ carbonitriles	29
	c. Reactions with α,β - unsaturated carbonyl compounds	30
	d. Reactions with unsymmetrical 1,3-dicarbonyl compounds.	34
	e. Reactions with α,β-bifunctional oxygen-halogen comp	ounds
		35
	f. With cyanogen bromide	36
	g. With formic acid	37
	h. Reaction with phenyliso(thio) cyanate	37
	i. With a variety of one carbon cyclizing agents	39
	j. Reactions with phosphorus compounds	40
	k. With nitrous acid	44
	l. With carbonitriles	45
	m. With bromo malononitrile	46
	n. Reaction with aldehyde	47
	o. With carbon disulphide	48
	p. Reaction with acetic anhydride	48
	q. Reaction with ethyl chloro acetate	49
С.	Biological activity	50

Part II : Synthesis of thienopyrimidines	53
1. Annulations of pyrimidine on thiophene ring	53
i. Using thiophene having vicinal amino/ester groups	53
a. With iso cyanate and isothio cyanate derivatives	54
b. With formamide	62
c. With nitrile compounds	63
d. With acetic anhydride	64
e. With urea and their derivatives	65
ii. Using thiophene having vicinal cyano/amino groups	65
a. With formic acid	65
b. With triethyl orthoformate	66
c. With nitrile compounds	67
iii. Using thiophene having vicinal amino/carbox	amide
groups	68
groups	68
groupsa. With aldehydes	68 68
groupsa. With aldehydesb. With acid halides	68 68 69
groupsa. With aldehydesb. With acid halidesc. With formamide.	68 68 69 69
groups	68 68 69 69 70
groups	68 68 69 69 70 71
groups	68 68 69 69 70 71
groups	68 68 69 69 70 71 71

React	tion	s of thienopyrimidines	74
i.	Re	actions attributed to thiophene ring	74
	a.	Halogenation	74
	b.	Vilsmeier- Haack reaction	75
	c.	Nitration	76
	d.	Ring opening of the thiophene ring	76
ii.	Re	actions attributed to nitrogen of the pyrimidine ring	77
	a.	Alkaylation	77
	b.	With alkyl halide	78
Biolo	gico	al activity	78
Resul	lt ai	nd discussion	80
Expe	rim	ental	138
Spect	ros	copic Figures	
Refer	enc	es	185
Arabi	ic S	ummary	j

Acknowledgment

First of all, thanks to <u>Allah</u> for helping me to accomplish this work.

I would like to present my great thanks to my supervisor Prof. Dr. Ahmed Said Ahmed Youssef; Professor of Organic Chemistry, Faculty of Science, Ain Shams University; for his guidance, continuous interest, moral support and encouragement. It was really a great opportunity for me to study under his supervision that I could learn a lot of things in the organic synthesis.

Also, I would like to express my sincere gratitude to **Prof. Dr. Magdy Mohamed Hemdan Mohamed & Prof. Dr. Wael S. I. Abou El-Magd;** Professors of Organic Chemistry, Faculty of Science, Ain Shams University; to follow the progress of the work with keen interest and guidance, generous supervision and continuous encouragement.

Also, I would like to thank **Dr. Mohsen Mohamed Kamal Abo El-regal**; Associated Professor of Organic Chemistry, Faculty of Science, Ain Shams University; for following the progress of the work with keen interest and guidance.

Also, I would like to thank Dr. Amira Taher Ali Mohamed; Lecturer of Organic Chemistry, Faculty of Science, Ain Shams University; for her generous supervision and guidance.

Finally, I would like to express my appreciation to my family, my friends, my colleagues in the chemistry department and all people who help me to finish this work.

Sandy Samy Samir

Abstract

Diazines and Triazines and their derivatives play an important role in medicinal chemistry due to their high biological activity. They are known to possess a broad spectrum of pharmacological activities such as antiviral, antibacterial, fungicidal, insecticidal, herbicides, hypotensive, hypothermic activities, in vitro supporting their anti-HIV, anticancer activities and biological inhibitors.

The original work of this thesis can be classified into three parts:

Part 1: In this part Synthesis of hydrazino 1,2,4-triazine derivative and its reactions with different reagents to form novel triazine derivatives.

Part 2: In this part Synthesis of an acid hydrazide derivative and its utility in building of new hetrocylic systems such as oxadiazole, triazole and pyrazole derivatives.

Part 3: The antitumor activities of some of the synthesized compounds were examined against liver and breast cancer cell lines.

Part (I): synthesis of some novel 1,2,4-triazine derivatives

1,2,4-Triazines and their derivatives have been widely studied in terms of their synthetic methodologies and reactivity since some of these derivatives were reported to have promising biological activities.

3-hydrazino-5,6-diphenyl-1,2,4-triazine was synthesized by condensation of benzil **1** with thiosemicarbazide followed by another condensation of the intermediate **2** with hydrazine hydrate to construct the hydrazino triazine derivative **3** (**Scheme 1**).

(Scheme 1)

Reaction of compound **3** with carbon disulfide in ethanol in the presence of KOH as a base, afforded the cycloaddition product triazolotriazine derivative **4**. When thione derivative **4** is treated with hydrazine hydrate in boiling dioxane, it gave the di heteryl hyrazine derivative **5** with a removal of H₂S gas (**Scheme 2**).

(Scheme 2)

Heating of compound **3** with phenyl isocyanate in dry benzene gave the corresponding addition product semicarbazide derivative **6**. Treatment of the semicarbazide derivative **6** with acetic anhydride yielded the triacetyl derivative **8** instead of the triazolotriazine derivative **7**.

A chemical proof for the suggested structure is gained by preparing an authentic sample, through reacting of compound 3 with acetic anhydride. (Scheme 3).

(Scheme 3)

The treatment of compound 3 with dibenzylidene hydrazine 9 and /or pyrazolidine derivative of malononitrile 10 gave the benzalhydrazone and pyrazolidinehydrazone derivatives 11 & 12, respectively. The structures of both compounds 11 and 12 were confirmed chemically by preparing authentic samples from

reactions of compound **3** with benzaldehyde and / or 1,3-diphenyl pyrazol-4-carbaldehyde (**Scheme 4**).

(Scheme 4)

Heating of compound **3** with phthalic anhydride in acetic acid under reflux gave the isoindoline derivative **13**. However its heating with isatin in DMF as a solvent yielded the schiff's base derivative **14** (**Scheme 5**).

(Scheme 5)

Treatment of compound **3** with ethyl acetoacetate in boiling ethanol afforded the corresponding condensation product **15** as a mixture of Syn- and anti-isomers. On the other hand, cyclocondensation product triazinotriazepine derivative **16** is produced by reacting of compound **3** with acetylacetone in boiling ethanol (**Scheme 6**).