

EVALUATION OF ADDITIVELY MANUFACTURED METALLIC MICRO-LATTICE FOR ENERGY ABSORPTION APPLICATIONS UNDER QUASI-STATIC AND DYNAMIC LOADINGS

By

Mahmoud Magdy Ahmed Moustafa Osman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

EVALUATION OF ADDITIVELY MANUFACTURED METALLIC MICRO-LATTICE FOR ENERGY ABSORPTION APPLICATIONS UNDER QUASI-STATIC AND DYNAMIC LOADINGS

By **Mahmoud Magdy Ahmed Moustafa Osman**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

Under the Supervision of

Prof. Dr. Ehab El-Danaf Assoc. Prof. Dr. Mostafa Shazly

Professor of Materials Science
Mechanical Design and Production
Department
Faculty of Engineering, Cairo University

Associate Professor Mechanical Engineering Department Faculty of Engineering, the British University in Egypt

EVALUATION OF ADDITIVELY MANUFACTURED METALLIC MICRO-LATTICE FOR ENERGY ABSORPTION APPLICATIONS UNDER QUASI-STATIC AND DYNAMIC LOADINGS

By Mahmoud Magdy Ahmed Moustafa Osman

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Mechanical Design and Production Engineering

Approved by the Examining Committee	
Prof. Dr. Ehab El-Danaf,	Thesis Main Advisor
Assoc. Prof. Dr. Chahinaz Saleh,	Internal Examiner
Prof. Dr. Hanadi Salem, Professor of Materials science and Engine	External Examiner ering, American University in Cairo

Engineer's Name: Mahmoud Magdy Ahmed Moustafa

Date of Birth: 08/08/1992 **Nationality:** Egyptian

E-mail: Mahmoudmagdy92@hotmail.com

Phone: +201033065520

Address: 5th Al-Galaa Street, Al-Basatin,

Registration Date: 01/03/2017 **Awarding Date:**/2019 **Degree:** Master of Science

Department: Mechanical Design and Production Engineering

Supervisors:

Prof. Dr. Ehab El-Danaf

Assoc. Prof. Dr. Mostafa Shazly

(Faculty of Engineering- The British University in Egypt)

Examiners:

Prof. Dr. Hanadi Salem (External examiner) (Faculty of Engineering, American University in Cairo) Assoc. Prof. Dr. Chahinaz Saleh (Internal examiner) Prof. Dr. Ehab El-Danaf (Thesis main advisor)

Title of Thesis:

Evaluation of Additively Manufactured Metallic Micro-lattice for Energy Absorption Applications under Static and Dynamic Loadings

Key Words:

Additive manufacturing; Selective Laser Melting; Finite element analysis; Energy absorption

Summary:

Truss lattice materials are man-made open porous cellular solids with periodic truss microstructures. Recent developments in additive manufacturing (AM) have enabled the fabrication of metallic lattice structures with dimensions close to micrometer scale. Among different lattice geometries, the octet truss lattice configuration is investigated in this study, as it provides nearly isotropic elastic properties and high specific strength. An extensive finite element (FE) parametric study was conducted on the design variables of the octet truss lattice aiming at increasing the specific energy absorption (SEA) and the energy absorption efficiency (EAE). Microlattice samples made from stainless steel 316L were manufactured using selective laser melting (SLM) based on the best design conditions obtained through the FE simulations. Quasi-static compression experiments were carried out on the fabricated samples which confirmed the results anticipated by FE simulations. In addition, the dynamic compressive behavior of the microlattice samples was reported from Split Hopkinson Pressure Bar (SHPB) testing technique at strain rate of the order 10³/s. Additional experimental studies were performed to elaborate the effect of heat treatment and acrylic filling of the microlattice spaces on the microlattice large deformation behavior statically and dynamically.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Ma	hmoud	Magdy	Ahr	ned	Date:
-------	----	-------	-------	-----	-----	-------

Signature:

Acknowledgments

I would like to express my deepest gratitude to Dr. Ehab El-Danaf for being my advisor and steering my research. His support and encouragement in and out of my research can never be compensated.

I would like to express my deepest appreciation to Dr. Mostafa Shazly for his supervision on this work and for using the facilities in his lab at the British University in Egypt (BUE). Dr. Mostafa showed a great support and from his comments, I learnt too much.

I would like to thank Dr. Moataz Attallah for using the facilities of his lab at the University of Birmingham, UK. Besides, I would like to thank Dr. Mahmoud Morsy and Eng. Mohamed Hamdy for using the facilities in their labs at the National Institute of Standards (NIS), Egypt.

This thesis work is dedicated to my wonderful parents and my fiancée Esraa Rabie, who have been a constant source of support and encouragement during the challenges of graduate school and life.

Table of Contents

DISCLAIMER	I
ACKNOWLEDGMENTS	II
TABLE OF CONTENTS	III
LIST OF TABLES	V
LIST OF FIGURES	VI
NOMENCLATURE	IX
ABSTRACT	
CHAPTER 1 : INTRODUCTION	1
1.1.Energy absorption principles	1
1.2.APPLICATIONS OF ENERGY-ABSORBING MATERIALS AND STRUCTURES.	
1.3.AVAILABLE ENERGY-ABSORBING MATERIALS AND STRUCTURES	
1.4.MICROLATTICE STRUCTURES.	
1.5.Metal additive manufacturing.	
1.6.DYNAMIC TESTING OF MATERIALS.	
1.7.Thesis organization	
CHAPTER 2 LITERATURE REVIEW	12
2.1.HISTORY OF CELLULAR MATERIALS.	12
2.2.METALLIC MICROLATTICE	12
2.2.1.Analytical modeling.	12
2.2.2.Experimental work	13
2.2.3.FE and experimental work.	15
2.3.HYBRID COMPOSITE MATERIALS.	
2.4.RESEARCH MOTIVATION	20
CHAPTER 3 METHODOLOGY	21
3.1.BUILDING THE FE MODEL	21
3.2.Analytical model	24
3.3.FE PARAMETRIC STUDY	25
3.4.The selection criterion.	26
3.5.FE MODEL VALIDATION	27
3.5.1.Additive manufacturing of specimens.	27
3.5.2.Microsturt testing.	
3.5.3.Microlattice quasi-static testing.	
3.5.4.Microlattice dynamic testing	
3.5.5.Samples examination	30

CHAPTER 4 RESULTS AND DISCUSSIONS	32
4.1.FE results	32
4.1.1.FE model comparison with the Analytical model	32
4.1.2.The parametric study	
4.1.2.1.Effect of relative density	
4.1.2.2.Effect of base material hardening.	
4.1.2.3.Effect of hollow truss R _i /R _o ratio.	
4.1.2.4.Effect of cell aspect ratio	
4.1.3.FE studies summary	48
4.2.EXPERIMENTAL RESULTS AND VALIDATIONS	48
4.2.1.Fabricated specimens	48
4.2.2.Fabricated lattice assessment	
4.2.3.Base material characterization	54
4.2.4.Micro-lattice quasi-static testing	55
4.2.5.Comparison of experimental results with FE results	58
4.2.6.Micro-lattice dynamic testing	61
4.2.7.Comparison with commercial honeycombs	
4.3.PARAMETRIC EXPERIMENTAL INVESTIGATIONS	63
4.3.1.Effect of acrylic filling	63
4.3.2.Effect of periodic cell number	68
4.3.3.Effect of heat treatment	
CHAPTER 5 CONCLUSIONS	71
5.1.Conclusions	71
5.2.Future work.	73
REFERENCES	74

List of Tables

Table 3.1: Concept laser M2 Technical Specifications	.28
Table 3.2: SLM Process parameters for stainless steel 316L microlattice specimens	
(Concept Laser M2)	
Table 4.1: Comparison between Analytical model and FE model results	.33
Table 4.2: Corresponding strut diameters for each relative density model	.35
Table 4.3: Decision matrix used in determining the best relative density model	.37
Table 4.4: Comparison between the perfect plastic model (P.P.) and SS 316L in term	ıs
of SEA and EAE	
Table 4.5: A decision matrix based on the SS 316L material model	40
Table 4.6: A decision matrix based on the perfect plastic material model	
Table 4.7: Hollow strut dimensions of the octet truss cell models of different inner to)
outer radius ratios	
Table 4.8: A decision matrix to determine the best R _i /R _o ratio of the hollow octet trus	
model at constant $ ho = 0.1$	
Table 4.9: A decision matrix to determine the best R _i /R _o ratio of the hollow octet trus	
model at constant $ ho = 0.2$	43
Table 4.10. Average and standard deviation of strut diameters of the cubic cell lattice	
and the stretched cell lattice	
Table 4.11: Fabricated cubic cell lattice: dimensions, masses and densities	
Table 4.12: Fabricated stretched cell lattice: dimensions, masses and densities	
Table 4.13: Comparison between FE analysis and experimental result regarding SEA	k
and EAE	
Table 4.14: Properties of SS316L lattices and their corresponding composite acrylic-	
SS 316L lattices based on quasi-static compression experiments	
Table 4.15: Properties of SS316L lattices and their corresponding composite acrylic-	
SS316L hybrid material based on dynamic compression experiments	68

List of Figures

Figure 1.1: Response of energy absorbing material; (a) ideal response, (b) actual	
response [4]	3
Figure 1.2: Classifications of energy absorbing structures	4
Figure 1.3: Different types of energy absorbing cellular structures a; [6], b;[7], c	
(current work)	5
Figure 1.4: A unit cell architecture of a microlattice material with different relative	
densities[12]	6
Figure 1.5: Different unit cell geometries[11]	
Figure 1.6: A BCC unit cell with (a) cylindrical constitutive struts; (b) tapered	
constitutive struts [15]	7
Figure 1.7: Microlattice structures fabricated from different base materials	7
Figure 1.8: A schematic of Selective Laser Melting (SLM) machine (a); SLM proces	SS
parameters (b)[11]	9
Figure 1.9: A Split Hopkinson Pressure Bar (SHPB) testing setup	.10
Figure 1.10: An example of strain gage measurements of incident, reflected and	
transmitted signals	.11
Figure 1.11: Incident and transmitted signals from SHPB testing without a testing	
specimen for alignment check; no reflection pulse is noticed (good alignment)[27]	.11
Figure 2.1: (a) Lattice structured samples; (b) Body Centered Cubic (BCC) unit cell	
	.13
Figure 2.2: CAD models of the square honeycomb; (a) solid walls and (b) lattice	
walled [40]	.14
Figure 2.3: Unit cell of the different cellular topologies. a) Strut-based cellular	
structures, b) Skeletal-TPMS based cellular structures and c) sheet-TPMS based	
cellular structures [41]	.15
Figure 2.4: A schematic of the pillar textile unit cell with main dimensions [43]	.16
Figure 2.5: Macroscopic stress-strain curves of octet truss lattice under uniaxial	
compression for different relative densities using FE [12]	.17
Figure 2.6: Base 316L material response through tension of a single strut of different	t
diameters (a) and at different strain rates (b) [12]	.18
Figure 2.7: Static compression experiments (a) of octet truss lattice specimens, and	
dynamic compression experiments (b) at 20m/s[12]	
Figure 3.1: A solid model of the octet-truss cell placed between two rigid plates	.22
Figure 3.2: Compressive response of octet truss cell model at different step times and	d
amplitude types	.22
Figure 3.3: Kinetic (KE) and strain energy (SE) variations during the FE simulation.	.23
Figure 3.4: A beam model of the octet-truss cell placed between two rigid plates (a);	,
Octet-truss cell beam model during compression (b)	.23
Figure 3.5: (a) octet-truss cell and its constitutive cells: Octahedral (green struts), and	d
Tetrahedral (brown struts); (b) schematic of the octahedral cell, and tetrahedral cell ((c)
T J	.25
Figure 3.6: Actual (blue line) and ideal (red dotted line) behavior of energy absorbin	ıg
material	.27
Figure 3.7: SDL ATLAS. Bench top tensile tester (a); fixation of a strut between	
machine jaws (b)	.29

Figure 3.8: The measured struts in the unit cell (red colored) using the polarizing
microscope31
Figure 4.1: Three configurations of octet-truss cell of different strut radii and same
strut length (L=2.178 mm) used in FE simulations
Figure 4.2: Stress strain curves resulting from the FE simulations on the three
configurations
Figure 4.3: Stress strain response resulting from the FE simulation showing buckling
effect34
Figure 4.4: Deformation configuration of the FE model showing buckling of the
constitutive struts of the octet truss lattice
Figure 4.5: Octet truss cell models at different relative densities
Figure 4.6: Compressive response of octet truss cell model with different relative
densities
Figure 4.7: The effect of the octet truss cell density on the specific energy absorption
(SEA) and energy absorption efficiency (EAE)
Figure 4.8: True stress-strain curves of material models used for FE simulations39
Figure 4.9: Compressive response of octet truss cell having different relative densities
and for the two material models: strain hardening as for SS 316L (solid lines) and
perfect plastic (dashed lines)
Figure 4.10: Geometric models of the octet truss cell with different inner to outer
radius ratios at constant $\rho = 0.1$ 41
Figure 4.11: Geometric models of the octet truss cell with different inner to outer
radius ratios at constant $\rho = 0.2$
Figure 4.12: Macroscopic response of hollow octet truss lattice models with different
R_i/R_o ratios under uniaxial compression simulations and at constant $\rho = 0.142$
Figure 4.13: Macroscopic response of hollow octet truss lattice models with different
R_i/R_o ratios under uniaxial compression simulations and at constant $\rho = 0.243$
Figure 4.14: (a and b) A unit cell of the cubic cell lattice; (c) the stretched cell lattice
with major dimensions $a = 3.08$ mm, $L = 2.18$ mm44
Figure 4.15: Diameter and yield strength ratios of the stretched cell lattice to the cubic
cell lattice with relative density46
Figure 4.16: Macroscopic stress-strain curve of the cubic and the stretched cells based
on FE simulations
Figure 4.17: Mesoscopic deformation modes of the cubic cell model (a) and the
stretched cell model (b) showing equivalent plastic strain contours48
Figure 4.18: Stainless steel 316L micro-lattice samples fabricated by SLM; (a) the
cubic cell lattice, and (b) the stretched cell lattice
Figure 4.19: Polarized light microscope images of the constitutive struts of the cubic
cell lattice: (a) horizontal, (b) inclined and for the stretched cell lattice: (c) horizontal,
(d) inclined51
Figure 4.20: effect of low-build angle on thin beam structures [52]51
Figure 4.21: Optical microscope images of the 0.5mm microstrut with different
magnifications through longitudinal section (a) and (b), and transverse section (c)53
Figure 4.22: SEM images of the cubic cell lattice fabricated by SLM from stainless
steel 316L
Figure 4.23: Base material stress-strain response, obtained from tensile experiments of
the 0.5mm diameter microstrut, fabricated by SLM with the same process parameters
of the fabricated mirco-lattices
Figure 4.24: Macroscopic stress strain response of the stainless steel lattices from
quasi-static testing

Figure 4.25: Configurations of deformation at some selected strain levels during the
quasi-static compression of the cubic cell lattice57
Figure 4.26: Configurations of deformation at some selected strain levels during the
quasi-static compression of the stretched cell lattice
Figure 4.27: Comparison between stress-strain curves obtained from experiments and
FE analysis for the cubic cell lattice
Figure 4.28: Selected configurations of the deformed cubic cell lattice at different
strain levels during experiments and FE simulations
Figure 4.29: Comparison between stress-strain curves obtained from experiments and
FE analysis for the stretched cell lattice60
Figure 4.30: Selected configurations of the deformed stretched cell lattice at different
strain levels during experiments and FE simulations
Figure 4.31: Quasi-static and dynamic compressive responses of the cubic and
stretched cell lattices
Figure 4.32: The hybrid composite material composed of acrylic matrix and the
stainless steel stretched cell lattice (a) and the cubic cell lattice (b)63
Figure 4.33: Macroscopic stress strain response of the composite stretched cell lattice
and its corresponding components64
Figure 4.34: Macroscopic stress strain response of the composite cubic cell lattice and
its corresponding components
Figure 4.35: Selected deformation configurations during quasi-static compression of
the composite stretched cell lattice65
Figure 4.36: Static (solid lines) and dynamic (dashed lines) compressive response of
the cubic and stretched cell composite lattices, and for plain acrylic67
Figure 4.37: Acrylic reinforced composite stretched cell lattice: (a) before and (b) after
compression at strain rates of 7500/s, showing the localized fracture67
Figure 4.38: Fabricated micro-lattice samples made from stainless steel 316L by SLM;
(a) the four-cell model; (b) the six-cell model
Figure 4.39: Macroscopic stress-strain response of the four-cell and six-cell lattice
samples under quasi-static compression experiments
Figure 4.40: Selected deformation configurations during lattice quasi-static
compression (six-cell model)
Figure 4.41: The effect of heat treatment (stress relief) on the quasi-static compressive
behavior of the cubic-cell lattice (a) and stretched cell lattice (b)70

Nomenclature

Symbols

A	area
a	unit cell edge length
C	elastic wave speed
D	diameter
E	Young's Modulus
k	coefficient in Eqs. 4.3, and 4.4
L	length; thickness
m_a	mass measurement in air
m_m	mass measurement in methanol
R	radius
R_{i}	inner radius
$R_{\rm o}$	outer radius
t	time
V_{st}	striker velocity
σ	stress
σ_{cr}	critical stress
σ_{crush}	crush stress
crusii	Clash stress
σ_p	plateau stress
σ_p	plateau stress
$\sigma_p \ \sigma_{tr}$	plateau stress transmitted stress
$egin{array}{l} \sigma_p \ \sigma_{tr} \ \sigma_y \end{array}$	plateau stress transmitted stress yield stress
$egin{aligned} \sigma_p \ \sigma_{tr} \ \sigma_y \ \sigma_{yl} \end{aligned}$	plateau stress transmitted stress yield stress lattice yield strength
$egin{aligned} \sigma_p \ \sigma_{tr} \ \sigma_y \ \sigma_{yl} \ arepsilon \end{aligned}$	plateau stress transmitted stress yield stress lattice yield strength strain
$egin{array}{l} \sigma_p \ \sigma_{tr} \ \sigma_y \ \sigma_{yl} \ arepsilon \ arepsilon_D \end{array}$	plateau stress transmitted stress yield stress lattice yield strength strain densification strain
σ_p σ_{tr} σ_y σ_{yl} ε ε_D ρ_a	plateau stress transmitted stress yield stress lattice yield strength strain densification strain density measurement in air
$egin{aligned} \sigma_p \ \sigma_{tr} \ \sigma_y \ \sigma_{yl} \ arepsilon \ arepsilon_D \ ho_a \ ho_b \end{aligned}$	plateau stress transmitted stress yield stress lattice yield strength strain densification strain density measurement in air base material density

Acronyms

AM	additive manufacturing
BCC	body-centered cubic
CAD	computer aided design
DIF	dynamic increase factor
EAE	energy absorption efficiency
EBM	electron beam melting
EDM	electric discharge machine
FCC	face-centered cubic
FE	finite element
FOPS	falling object protective structures
KE	kinetic energy

P.P. perfect plastic

ROPS roll-over protective structures
RSEA relative specific energy absorption

SE strain energy

SEA specific energy absorption SEM scanning electron microscope SHPB Split Hopkinson Pressure Bar

SLM selective laser melting

Abstract

Truss lattice materials are man-made open porous cellular solids with periodic truss microstructures. These materials are excellent candidates for lightweight and energy absorbing applications such as automotive parts and personal protective equipment, due their high specific strength properties. Recent developments in additive manufacturing (AM) have enabled the fabrication of metallic lattice structures with dimensions close to micrometer scale. Among different lattice geometries, the octet truss lattice configuration is investigated in this study, as it provides nearly isotropic elastic properties and high specific strength. Finite element (FE) parametric studies were conducted considering some design variables of the octet truss lattice aiming at increasing the specific energy absorption (SEA) and the energy absorption efficiency (EAE), i.e. a constant plateau stress between the initial yield and densification strain. The design variables considered in the present work were the relative density, hollow strut inner to outer radii ratios, and cell aspect ratio. Based on FE simulations, the octet truss lattice with relative density of 0.2 was found to offer the best combination of high SEA and EAE. Microlattice samples made from stainless steel 316L were manufactured by selective laser melting (SLM) based on the best design conditions obtained through FE simulations. The quality of the fabricated microlattice samples were investigated through hydrostatic weighing, optical microscopy, scanning electron microscopy and polarized light microscope imaging. Quasi-static compression experiments were carried out on the fabricated samples which confirmed the results anticipated by FE simulations. In addition, the dynamic compressive behavior of the microlattice samples was obtained using the Split Hopkinson Pressure Bar (SHPB) testing technique at strain rates in the order of 10³/s. Dynamic tests revealed an increase in the plateau stress of the lattice with a dynamic increase factor (DIF) of 1.27, which is attributed to the material strain rate sensitivity. Additional experimental studies were performed to explain the effect of heat treatment and acrylic filling of the microlattice spaces on the microlattice large deformation behavior, both quasi-statically and dynamically. Filling the microlattice with acrylic resin featured a substantial increase in the microlattice specific strength with a considerable deformation capacity which could be beneficial for load bearing structures when material toughness is desirable. However, both SEA and EAE dropped for the composite lattice due to the low achievable densification strain in the presence of acrylic filling material.

Keywords:

Microlattice Metamaterials, Hybrid, Additive manufacturing, Selective Laser Melting (SLM), Finite element analysis, Energy absorption, Split Hopkinson bar testing