



# EFFECT OF ANNEALING ON ENHANCING OPTICAL ABSORBANCE AND EMITTANCE PROPERTIES OF MAGNETRON-SPUTTERED TIN THIN FILMS FOR SOLAR THERMAL ABSORBER APPLICATIONS

By

#### Hanan Abd El-kader Abd El-Fattah Yousef

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
METALLURGICAL ENGINEERING

# EFFECT OF ANNEALING ON ENHANCING OPTICAL ABSORBANCE AND EMITTANCE PROPERTIES OF MAGNETRON-SPUTTERED TIN THIN FILMS FOR SOLAR THERMAL ABSORBER APPLICATIONS

# By Hanan Abd El-kader Abd El-Fattah Yousef

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY** 

in
METALLURGICAL ENGINEERING

Under the Supervision of

| Dr. Iman Salan El-Din El-<br>Mahallawi   | Dr. waleed Monamed Abd El-Aziz<br>Khalifa |
|------------------------------------------|-------------------------------------------|
|                                          |                                           |
| Professor of Metallurgy                  | Professor of Metallurgy                   |
| Metallurgy Department                    | Metallurgy Department                     |
| Faculty of Engineering, Cairo University | Faculty of Engineering, Cairo University  |
|                                          |                                           |

### Dr. Mostafa Hassan Yousssef Shazly

Ass. Professor of Mechanical
Engineering
Mechanical Engineering Department
Faculty of Engineering, The British
University in Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

# EFFECT OF ANNEALING ON ENHANCING OPTICAL ABSORBANCE AND EMITTANCE PROPERTIES OF MAGNETRON-SPUTTERED TIN THIN FILMS FOR SOLAR THERMAL ABSORBER APPLICATIONS

# By Hanan Abd El-kader Abd El-Fattah Yousef

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

METALLURGICAL ENGINEERING

Approved by the Examining Committee

**Prof. Dr.: Iman Salah El-Din El-Mahallawi,** Thesis Main Advisor Faculty of engineering, Cairo University

Prof. Dr: Waleed Mohamed Abd El-Aziz Khalifa, Advisor

Faculty of engineering, Cairo University

**Ass. Prof. Dr. Mostafa Hassan Youssef Shazly,** Advisor Faculty of engineering, British university in Egypt

Prof. Dr. Adel Khalil Hassan Khalil,
Faculty of engineering, Cairo University

Internal Examiner

**Prof. Dr. Nahed Abd El-Hamid El-Mahallawy**, External Examiner Faculty of engineering, Ein Shams University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer:** Hanan Abd El-kader Abd El-Fattah Yousef

**Date of Birth:** 28 / 11 / 1982 **Nationality:** Egyptian

E-mail: enghanannn@gmail.com

**Phone:** +2 01006731079

**Address:** 75 N Hadyak El-Ahram(Giza)

**Registration Date:** 1/10/2014 **Awarding Date:** //2019

**Degree:** Doctor of philosophy

**Department:** Mining, Petroleum, and Metallurgical Engineering

**Supervisors: Prof. Dr.** Iman Salah El-Din El-Mahallawi

**Prof. Dr.** Waleed Mohamed Abd El-Aziz Khalifa **Ass. Prof. Dr.** Mostafa Hassan Youssef Shazly (BUE)

**Examiners**: **Prof. Dr.** Nahed Abd El-Hamid El-Mahallawy (External examiner)

Prof. Dr. Adel Khalil Hassan Khalil (internal examiner)
Prof. Dr. Iman Salah El-Din El-Mahallawi (Thesis main advisor)
Prof. Dr. Waleed Mohamed Abd El-Aziz Khalifa (Advisor)
Ass. Prof. Dr. Mostafa Hassan Youssef Shazly (BUE) (Advisor)

#### **Title of Thesis:**

Effect of Annealing on Enhancing Optical Absorbance and Emittance Properties of Magnetron-sputtered TiN Thin Films for Solar Thermal Absorber Applications

#### **Key Words:**

Selective absorber; Optical properties; TiN; TiO<sub>2</sub>; TiN<sub>x</sub>O<sub>y</sub>.

#### **Summary:**

The first part of this work covers the deposition parameters pf RF PVD sputtering technique and their effect of thin film properties. Second part covers a comparison between TiNxOy and TiN in as-deposited state and annealed state at 400 in air and in vacuum. In Third part TiN thin films are deposited at different times and flowrates of N2 gas then annealed at 800 in air and at 400 in air and in vacuum. Optical properties and microstructure of deposited TiN before and after annealing are studied. The change in optical properties after annealing are correlated to change in microstructure and structure of thin films. The optical properties of all thin films before and after annealing are characterized by spectrophotometer, and Fourier transform infrared spectroscopy (FTIR). The morphology and structure are studied by scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and Raman spectroscopy. It was found that the optical absorbance of sputtered TiN thin films is changed after annealing at 800°C and increased to 94% with a stable profile in ultraviolet (UV), visible range and near infrared (IR) ranges.

### **Disclaimer**

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

| Name: Hanan Abd El-Kader | Abd El-Fattah | Date: |
|--------------------------|---------------|-------|
| Signature:               |               |       |

### Acknowledgments

I would like to express my sincere thanks to Prof. Dr. Iman El Mahallawi Metallurgical Engineering Dept. Faculty of Engineering, Cairo University. Dr. Mostafa Shazly Mechanical Engineering Dept. Faculty of Engineering, British University in Egypt, and Prof. Dr. Waleed Khalifa Metallurgical Engineering Dept. Faculty of Engineering, Cairo University for their guidance, patience, support, fruitful discussions, and revision of the thesis. I consider myself very fortunate for being able to work with them. Also, I would like to show gratitude The STDF Project No. 10663. Many thanks to my husband and my mother for their support.

# **Table of contents**

| LIST O  | LIST OF TABLES                                                             |     |
|---------|----------------------------------------------------------------------------|-----|
| LIST O  | F FIGURES                                                                  | VII |
| NOME    | NCLATURE                                                                   | XII |
| ABSTR   | ACT                                                                        | XV  |
| Chapter | 1: Introduction                                                            | 1   |
| 1.1     | Solar energy: a solution to world energy demands                           | 1   |
| 1.2     | Thermal solar energy applications                                          | 2   |
| 1.3     | Conversion of solar energy into thermal energy                             | 4   |
| 1.3.1   | Selective surfaces                                                         | 4   |
| 1.4     | Theoretical background                                                     | 6   |
| 1.4.1   | The electromagnetic radiation                                              | 6   |
| 1.4.1.1 | Thermal radiation                                                          | 7   |
| 1.4.1.2 | The solar radiation                                                        | 8   |
| 1.4.1.3 | Relation between the temperature of object and radiation                   | 9   |
| 1.4.2   | Absorption, transmission and emission                                      | 10  |
| 1.4.2.1 | Elementary Theory                                                          | 10  |
| 1.4.3   | Heat loss mechanisms                                                       | 13  |
| 1.4.3.1 | Conduction                                                                 | 13  |
| 1.4.3.2 | Convection                                                                 | 13  |
| 1.4.3.3 | Radiation                                                                  | 13  |
| 1.4.4   | Optical features of absorbers                                              | 14  |
| Chapter | 2: Literature Review                                                       | 16  |
| 2.1     | Solar selective absorber coatings                                          | 16  |
| 2.1.1   | Service requirements and properties                                        | 16  |
| 2.1.2   | Types of solar selective absorbers                                         | 16  |
| 2.1.2.1 | Intrinsic selective absorber surface                                       | 17  |
| 2.1.2.2 | Semiconductor-metal tandems selective absorbers                            | 19  |
| 2.1.2.3 | Surface textured selective absorbers                                       | 19  |
| 2.1.2.4 | Multilayer absorbers (dielectric- metal absorbers)                         | 20  |
| 2.1.2.5 | Metal-dielectric composite selective absorbers (cermets-composite coating) | 22  |

| 2.1.3       | Review of temperature range of absorber materials                                   | 28 |
|-------------|-------------------------------------------------------------------------------------|----|
| 2.1.4       | Methods of Selective absorbers Fabrication                                          | 30 |
| 2.1.4.1     | Deposition of thin film                                                             | 30 |
| 2.1.4.2     | General characteristics of thin film deposition                                     | 30 |
| 2.1.4.3     | Sputtering                                                                          | 30 |
| 2.1.4.3.1   | RF sputtering                                                                       | 32 |
| 2.1.4.3.2   | Reactive sputtering technique                                                       | 32 |
| 2.1.4.3.2.1 | Reactive gases                                                                      | 33 |
| 2.1.4.3.2.2 | Reactive gas reactions in the vacuumed chamber                                      | 33 |
| 2.1.4.3.3   | Control of reactive sputtering                                                      | 34 |
| 2.1.4.3.4   | Process stability                                                                   | 34 |
| 2.1.4.4     | Deposition by electrochemical Methods                                               | 34 |
| 2.1.4.4.1   | Electroplating                                                                      | 35 |
| 2.1.4.4.2   | Anodic Oxidation Method                                                             | 35 |
| 2.1.4.4.3   | Sol gel technique                                                                   | 35 |
| 2.1.4.5     | Chemical painting technique                                                         | 35 |
| 2.2         | Thin film characterization                                                          | 35 |
| 2.3         | Current state of art of TiN <sub>x</sub> O <sub>y</sub> , TiN, and TiO <sub>2</sub> | 36 |
| 2.4         | Practical applications (companies)                                                  | 40 |
| 2.5         | Problem definition and Aim of work                                                  | 41 |
|             |                                                                                     | 40 |
| -           | 3: Experimental Work                                                                | 42 |
| 3.1         | Deposition of thin film: Equipment and Materials                                    | 42 |
| 3.1.1       | TiNi & Al thin films                                                                | 42 |
| 3.1.2       | TiN & TiN <sub>x</sub> O <sub>y</sub> thin films                                    | 44 |
| 3.1.3       | TiN thin film at different conditions                                               | 45 |
| 3.2         | Annealing furnace                                                                   | 46 |
| 3.3         | Samples prepared and their designations                                             | 46 |
| 3.4         | Characterization equipment                                                          | 18 |

| 3.4.1      | Thickness and surface roughness measurements                          | 48 |
|------------|-----------------------------------------------------------------------|----|
| 3.4.2      | Surface microstructure and morphology                                 | 49 |
| 3.4.3      | Optical properties                                                    | 53 |
| Chapter 4: | Results and discussion                                                | 55 |
| 4.1        | Understanding microstructure and optical properties of FCC thin films | 55 |
| 4.1.1      | Microstructure analysis                                               | 55 |
| 4.1.1.1    | Al thin film deposited for 100 s                                      | 55 |
| 4.1.1.2    | TiNi thin film deposited for 20 min.                                  | 56 |
| 4.1.2      | Structural characterization                                           | 60 |
| 4.1.3      | Optical properties characterizations                                  | 61 |
| 4.2        | Comparison of TiN and TiN <sub>x</sub> O <sub>y</sub> thin films      | 64 |
| 4.2.1      | As-deposited TiN and TiN <sub>x</sub> O <sub>y</sub> thin films       | 64 |
| 4.2.1.1    | SEM study and surface topography                                      | 64 |
| 4.2.1.2    | XRD analysis                                                          | 67 |
| 4.2.1.3    | Optical properties                                                    | 68 |
| 4.2.2      | Effect of annealing on TiN thin film                                  | 71 |
| 4.2.2.1    | SEM study and AFM topography of annealed TiN                          | 71 |
| 4.2.2.2    | XRD analysis                                                          | 73 |
| 4.2.2.3    | Optical properties                                                    | 75 |
| 4.3        | Effect of N <sub>2</sub> flow rate                                    | 76 |
| 4.3.1      | As-deposited TiN                                                      | 77 |
| 4.3.1.1    | Structure and micro structure of as-deposited TiN thin films          | 77 |
| 4.3.1.2    | Optical properties                                                    | 79 |
| 4.3.2      | Annealed TiN at 400°C in air and in vacuum for 2 hrs                  | 81 |
| 4.3.2.1    | Microstructure characterization                                       | 81 |
| 4.3.2.1.1  | XRD and Raman spectroscopy analysis                                   | 81 |
| 4.3.2.1.2  | SEM and AFM images                                                    | 83 |
| 4.3.2.2    | Optical properties                                                    | 86 |
| 4.3.3      | Annealed TiN in air at 800°C.                                         | 90 |

| References | S                                                                        | 105 |
|------------|--------------------------------------------------------------------------|-----|
| 5.2        | Future recommendations                                                   | 104 |
| 5.1        | Conclusions                                                              | 103 |
| Chapter 5  | : Conclusions & Future recommendations                                   | 103 |
| 4.4        | Overview and general discussion of annealing and microstructural results | 98  |
| 4.3.3.2    | Optical properties                                                       | 96  |
| 4.3.3.1.3  | High Magnification SEM and Surface Topography                            | 92  |
| 4.3.3.1.2  | XRD and Raman spectroscopy analysis                                      | 90  |
| 4.3.3.1.1  | Low Magnification SEM                                                    | 90  |
| 4.3.3.1    | Microstructure                                                           | 90  |

# **List of Tables**

| Table 1.1: | Optical features of absorbers                                                            | 15  |
|------------|------------------------------------------------------------------------------------------|-----|
| Table 2.1: | Properties of some pre-tested selective absorber surfaces                                | 18  |
| Table 2.2: | Effect of changing the M layer thickness on optical properties of the selective absorber | 21  |
| Table 2.3: | High-temperature selective cermet absorber (two absorbing layers)                        | 25  |
| Table 2.4: | High-temperature selective cermet absorber (Multi layers/graded)                         | 25  |
| Table 2.5: | High-temperature selective single layer absorber                                         | 25  |
| Table 2.6: | Absorbance and emittance obtained with change in multilayer structure                    | 27  |
| Table 2.7: | Solar selective surface absorbers used at medium temperature applications                | 28  |
| Table 2.8: | Solar selective absorbers for high temperature                                           | 29  |
| Table 2.9: | Commercialized solar selective absorbers and produced company                            | 40  |
| Table 3.1: | Specification of Cesar 1310 RF generator                                                 | 42  |
| Table 3.2: | samples prepared                                                                         | 47  |
| Table 4.1: | The results obtained for the film thickness and roughness for all samples.               | 57  |
| Table 4.2: | Composition of TiN, and TiNxOy thin films                                                | 66  |
| Table 4.3: | XRD angles                                                                               | 68  |
| Table 4.4: | Composition of annealed TiN at 400°C in air and in vacuum thin films                     | 71  |
| Table 4.5: | The designations before and after annealing                                              | 77  |
| Table 4.6: | Comparison between other works results and results in this work                          | 99  |
| Table 4.7: | Effect of changing microstructure on the average absorbance                              | 102 |

## LIST OF FIGURES

| Figure 1.1:  | The Possibility of renewable energy sources                                                                                                                                          | 1  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1.2:  | Schematic designs for energy resources                                                                                                                                               | 2  |
| Figure 1.3:  | Solar parabolic trough collector                                                                                                                                                     | 3  |
| Figure 1.4:  | Selective surfaces                                                                                                                                                                   | 5  |
| Figure 1.5:  | Solar spectrums                                                                                                                                                                      | 5  |
| Figure 1.6:  | Ideal selective surfaces                                                                                                                                                             | 6  |
| Figure 1.7:  | shows different colors of light represented different wave lengths of magnetic radiation                                                                                             | 6  |
| Figure 1.8:  | Comparison of solar spectrum & black body emission                                                                                                                                   | 10 |
| Figure 1.9:  | Emittance of aluminum at two different temperatures                                                                                                                                  | 12 |
| Figure 1.10: | Heat losses (conduction, convection and radiation)                                                                                                                                   | 14 |
| Figure 1.11: | Absorbance (a) and reflectance (R) for ideal and real absorber                                                                                                                       | 15 |
| Figure 2.1:  | Schematic designs of five types of the absorber coatings                                                                                                                             | 17 |
| Figure 2.2:  | Schematic designs of multilayer absorber films structure                                                                                                                             | 20 |
| Figure 2.3:  | Schematic design of metal dielectric solar selective absorber                                                                                                                        | 22 |
| Figure 2.4:  | a) porous alumina absorber layer. b) Co metal filled in the pores in alumina layer                                                                                                   | 23 |
| Figure 2.5:  | a) Schematic design of cermet selective absorber contains two absorbing layers with two different metal volume fractions. b) Real image of cermet solar selective absorber structure | 23 |
| Figure 2.6:  | Schematic design of DC Sputtering technique mechanisms                                                                                                                               | 31 |
| Figure 2.7:  | Schematic design to dark space                                                                                                                                                       | 32 |
| Figure 2.8:  | Schematic design for RF sputtering                                                                                                                                                   | 32 |
| Figure 2.9:  | The stages of target poisoning process                                                                                                                                               | 33 |

| Figure 2.10: | change of target voltage as the reactive gas pumped into chamber                                                                                                                                          | 34 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 3.1:  | RF Sputtering                                                                                                                                                                                             | 43 |
| Figure 3.2:  | plasma glowing                                                                                                                                                                                            | 43 |
| Figure 3.3:  | before and after the deposition                                                                                                                                                                           | 43 |
| Figure 3.4:  | Nano flex RF sputtering                                                                                                                                                                                   | 45 |
| Figure 3.5:  | Plasma glowing                                                                                                                                                                                            | 46 |
| Figure 3.6:  | Three zones furnace                                                                                                                                                                                       | 46 |
| Figure 3.7:  | KLA Tencor P-17 stylus profiler                                                                                                                                                                           | 48 |
| Figure 3.8:  | SEM FEI                                                                                                                                                                                                   | 50 |
| Figure 3.9:  | SEM Quanta 250 FEG                                                                                                                                                                                        | 50 |
| Figure 3.10: | 5600LS                                                                                                                                                                                                    | 51 |
| Figure 3.11: | (XRD) X'Pert Pro PANalytical                                                                                                                                                                              | 52 |
| Figure 3.12: | Raman spectroscopy (Horiba – LABRAM HR)                                                                                                                                                                   | 53 |
| Figure 3.13: | Spectrophotometer                                                                                                                                                                                         | 53 |
| Figure 3.14: | FTIR spectrometer                                                                                                                                                                                         | 54 |
| Figure 4.1:  | SEM micrographs of Al thin film deposited for 100 S above<br>Stainless steel and glass substrates. (a) SEM of Al thin film on<br>Stainless steel substrate, (b) SEM of Al thin film on glass<br>substrate | 56 |
| Figure 4.2:  | SEM micrographs of stainless-steel substrate before and after deposition of thin film. (a) SEM of Stainless-steel substrate, (b) SEM of TiNi thin film after deposition on Stainless steel substrate      | 58 |
| Figure 4.3:  | SEM micrographs of Al substrate before and after deposition of thin film. (a) SEM of AL substrate with natural oxide, (b) SEM of TiNi thin film after deposition on Al substrate                          | 59 |
| Figure 4.4:  | SEM micrographs of Cu substrate with natural oxide before and after deposition of thin film. (a)SEM of CuO, (b) SEM of TiNi thin film on CuO                                                              | 60 |
| Figure 4.5:  | XRD patterns of the TiNi thin films sputtered on different                                                                                                                                                | 61 |

#### substrates

| Figure 4.6:   | Absorbance characterization of SS, Al, Cu substrates, with and without deposited TiNi thin film in UV, visible range and near IR regions | 63 |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.7:   | Emittance values of SS, Al, Cu substrates and the same substrates after deposition of thin film in far IR regions                        | 63 |
| Figure. 4.8:  | AFM and SEM images of a) TiN thin film, and b) $\text{TiN}_x\text{O}_y$ thin film                                                        | 65 |
| Figure. 4.9:  | EDX of TiN (a &b), and $TiN_xO_y$ (c)                                                                                                    | 66 |
| Figure 4.10:  | XRD of TiN and TiN <sub>x</sub> O <sub>y</sub> thin films                                                                                | 68 |
| Figure. 4.11: | Absorbance of TiN and TiNxOy thin films                                                                                                  | 70 |
| Figure. 4.12: | Emittance of TiN and TiNxOy thin films                                                                                                   | 70 |
| Figure 4.13:  | SEM and AFM images of a) TiN after annealing at 400°C in air, and b) TiN after annealing at 400°C in vacuum                              | 72 |
| Figure 4.14:  | EDX of annealed TiN at 400°C in vacuum (a &b), and annealed TiN at 400°C in air (c & d)                                                  | 73 |
| Figure 4.15:  | XRD of TiN, $\text{TiN}_x\text{O}_y$ , annealed TiN in air, and annealed TiN in vacuum.                                                  | 74 |
| Figure 4.16:  | Absorbance of annealed TiN in air and in vacuum                                                                                          | 75 |
| Figure 4.17   | Emittance of annealed TiN in air and in vacuum                                                                                           | 76 |
| Figure 4.18:  | SEM images of as-deposited TiN thin films, samples from TiN1 to TiN9 represented by (a,b,c,d,e,f,g,h,i); respectively                    | 78 |
| Figure 4.19:  | XRD of as-deposited TiN thin films                                                                                                       | 79 |
| Figure 4.20:  | Absorbance of as-deposited TiN thin films                                                                                                | 80 |
| Figure 4.21:  | Emittance of as-deposited TiN                                                                                                            | 80 |
| Figure 4.22:  | XRD of TiN thin films after annealing at 400°C on air for 2 hrs                                                                          | 81 |
| Figure 4.23:  | XRD of TiN thin films after annealing under vacuum at 400°C for 2 hrs                                                                    | 82 |
| Figure 4.24:  | Raman spectra of S7, S8, T7, and T8                                                                                                      | 82 |
| Figure 4.25:  | SEM images of TiN thin films after annealing at 400°C on air for 2 hrs from S1 to S9 which represented by (a, b, c, d, e, f, g, h,       | 84 |

## and i) respectively

| Figure 4.26: | SEM images of TiN thin films after annealing at 400°C under vacuum for 2 hrs from T1 to T9 which represented by (a, b, c, d, e, f, g, h, and i) respectively  | 85  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.27: | AFM images of a) S7, b) S8, c) T7, and d) T8                                                                                                                  | 86  |
| Figure 4.28: | Absorbance of TiN thin films after annealing at 400°C on air for 2 hrs                                                                                        | 88  |
| Figure 4.29: | Absorbance of TiN thin films after annealing under vacuum at 400°C for 2 hrs.                                                                                 | 88  |
| Figure 4.30: | Emittance of TiN thin films after annealing at 400°C on air for 2 hrs                                                                                         | 89  |
| Figure 4.31: | Emittance of TiN thin films after annealing under vacuum at 400°C for 2 hrs.                                                                                  | 89  |
| Figure 4.32: | SEM images at low magnifications TiN7 of a) as deposited and b) after annealing.                                                                              | 90  |
| Figure 4.33: | XRD of TiN thin films after annealing                                                                                                                         | 91  |
| Figure 4.34: | Raman spectra of TiN7, TiN8, TiO2 7, TiO2 8                                                                                                                   | 92  |
| Figure 4.35: | SEM images of TiO <sub>2</sub> formed after annealing, samples from TiO <sub>2</sub> 1 to TiO <sub>2</sub> 9 represented by (a,b,c,d,e,f,g,h,i); respectively | 94  |
| Figure 4.36: | AFM images of (a, b) TiN7 & TiN8 and (c, d) TiO $_2$ 7 & TiO $_2$ 8                                                                                           | 95  |
| Figure 4.37: | SEM image represent the nanofibers diameters of a) $TiO_27$ and b) $TiO_28$                                                                                   | 95  |
| Figure 4.38: | EDX and chemical composition of a) TiN thin film before annealing, and b) the nanofibers formed after annealing at 800°C in air                               | 96  |
| Figure 4.39: | Absorbance of three groups before and after annealing at 800°C                                                                                                | 97  |
| Figure 4.40: | Emittance of deposited and annealed TiN thin films                                                                                                            | 98  |
| Figure 4.41: | a) Reflectance of $TiO_28$ in this work and b) Reflectance of $TiO_x$ deposited in Ref [115]                                                                  | 100 |
| Figure 4.42: | The recommended SSA application based on this work results                                                                                                    | 101 |