سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caron-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفي

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

GEOLOGICAL AND GEOCHEMICAL STUDIES ON THE PLIOCENE-QUATERNARY SEDIMENTS OF EL-HAMRAWIN-MERSA-ALAM DISTRICT, RED SEA COAST, EGYPT

A Thesis

Submitted By

AMAN ABD EL-HAKEEM ZALAMAH

For The Degree Of
DOCTOR OF PHILOSOPHY IN SCIENCE
(GEOLOGY)

To

The Geology Department
Faculty of Science
Zagazig University

Zagazig-Egypt

. 1994

13 14941

ACKNOWLEDGEMENT

The author wishes to express the deep appreciation to Prof. Dr. M. A. Shaaban Head of Geology Department, Zagazig University for supervision, kind support, encouragement and consultation. And also I wish to express my deep thanks and gratitude to Ass. Prof. Dr. A. E. Ziko Geology Department Faculty of Science, Zagazig University for supervising, sincere help and valuable discussions.

The author is greatly indebted to Prof. Dr. M. M. Hassaan, Prof of Economic Geology and Geochemistry, Geology Department, Al-Azhar University who proposed the point of research, planned and supervised all steps of this research, samples collection, constant guidance, critical reading as well as the keen revision of the manuscript and consultation.

Many thanks are extended to Prof. Dr. M. Y. Attawiya Head of Radioactive Minerals Department, Nuclear Materials Corporation, Cairo, Egypt for supervising and funding facilities of chemical analysis and X-ray diffraction analysis.

Special thanks due to Dr. F. M. Abu El-Enin, Geology Department, Faculty of Science, Zagazig University for Sincere help during collection of samples, supervising and critical reading of the manuscript.

Thanks are also due to Dr. H. A. Hamed, Geology Department, Zagazig University for his help. Thanks and deep gratitude to My Husband for his encouragement, his help and association to me in the field.

I am very grateful to all who assisted me and made this work come true.

CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF FIGURES	iii
LIST OF TABLES	xii
CHAPTER I: INTRODUCTION AND PREVIOUS WORK	1
CHAPTER II: LITHOSTRATIGRAPHY	19
Wadi Quseir El-Kadium	25
Wadi Essel	32
Wadi Sherm El-Bahari	36
	39
Wadi Um-Gheig	43
Wadi Abu-Dabbab	47
Ras Shagra Area	47
CHAPTER III: PETROLOGY	53
GRAIN SIZE ANALYSIS	53
Grain Size Parameters	63
Interrelationship Between Grain Size Parameters	76
Paleoenvironmental Interpretations	80
PETROGRAPHY	101
A- Clastic Group of Gabir Formation	102
B- Carbonate Group of Gabir Formation	114
C- Clastic Group of Shagra Formation	118
D- Carbonate Group of Shagra Formation	126
E- Raised Reefs of Abu Shegeili Formation	139
DIAGENESIS	147
1- Diagenesis in Sandstones	147
2- Diagenesis in Carbonate	152

CHAPTER IV: MINERALOGICAL COMPOSITION	173
A- HEAVY MINERALS ANALYSIS	173
Light Fraction	174
Heavy Fraction	175
Genetic Significance of Certain Heavy Minerals	185
B- X-RAY DIFFRACTION ANALYSIS	190
1- Mineral Composition of Bulk Samples	190
2- Clay Minerals	202
3- X-ray Diffraction Analysis of Fossils and Recent Equivalents	205
CHAPTER V: GEOCHEMISTRY	213
A- GEOCHEMSITRY OF MAJOR ELEMENTS	214
Quseir El-Kadium Locality	215
Essel Locality	219
Sherm El-Bahari Locality	223
Um-Gheig Locality	225
Abu-Dabbab Locality	226
Ras-Shagra Locality	228
B- GEOCHEMISTRY OF TRACE ELEMENTS	232
1- Abundance	233
2- Vertical Distribution	
Quseir El-Kadium Locality	252
Essel Locality	252
Sherm El-Bahari Locality	252
Um-Gheig Locality	252
Abu-Dabbab Locality	253
Ras-Shagra Locality	253
CHAPTER VI: DEPOSITIONAL ENVIRONMENT	254
SUMMARY AND CONCLUSION	267
REFERENCES	279

LIST OF FIGURES

Figur	e	Page
(1):	Geological map of the studied area	2
(2):	Correlation chart of the studied sections	20
(3):	Lithologic section of Wadi Quseir El-Kadium	26
(4):	Showing the contact between silty sandstone bed (micaceous, bed	11),
	and fossiliferous sandy limestone (bed 12, dolomitic),	
	Gabir Formation, Wadi Quseir El-Kadium	28
(5):	Raised reefs, corals and spines, Raised Reefs, Wadi	
	Quseir El-Kadium	28
(6):	The First and the Second Raised Reefs, Raised reef,	
	Abu Shegeili Formation Wadi Quseir El-Kadium	29
(7):	Panoramatic view of Wadi Quseir El-Kadium	30
(8):	Lithologic section of Wadi Essel	33
(9):	Shell accumulations and coralline limestones bed no. 20,	
	Raised reefs of Abu Shegeili Formation, Wadi Essel	34
(10):	Siltstone at the base, graded to cyclic conglomerate, topped by	
	coralline limestone (bed no. 16), Raised reefs, Abu Shegeili	
	Formation, Wadi Sherm El-Bahari	34
(11):	Lithologic section of Wadi Sherm El-Bahari	37
(12):	Lithologic section of Wadi Um-Gheig	40
(13):	Interance of Wadi Um-Gheig	42
(14):	Coralline limestone at the interance of Wadi Abu-Dabbab.	
	Raised Reef of Abu Shegeili Formation	42
(15):	Lithologic section of Wadi Abu-Dabbab	44
(16):	The conglomeratic bed at the interance of Wadi Abu-Dabbab,	
	Abu Shegeili Formation	46
(17):	Lithologic section of Ras-Shagra area	48
(18):	Apart of panoramatic view of Ras Shagra	51
(19):	A second part of panoramatic view of Ras Shagra	52
(20):	Cummulative curves of the studied sand samples of Pliocene	
	Wadi Essel Locality	55
(21):	Cummulative curves of the studied sand samples of Pliocene	
	Wadi Essel locality	56

(22):	Cummulative curves of the studied sand samples of Pliocene	
	Wadi Sherm El-Bahari locality	57
(23):	Cummulative curves of the studied sand samples of Pliocene	
	Wadi Um-Gheig locality	58
(24):	Cummulative curves of the studied sand samples of Pliocene	
	Wadi Abu-Dabbab locality	59
(25):	Cummulative curves of the studied sand samples of Pliocene	
	Wadi Abu-Dabbab locality	60
(26):	Cummulative curves of the studied sand samples of Pliocene	
	Wadi Abu-Dabbab locality	61
(27):	Cummulative curves of the studied sand samples of Pliocene	
	Ras Shagra locality	62
(28):	The scatter diagram of mean size (MZ) versus each of sorting (σ_1) ,	
	Skewness (SKI) and Kurtosis (KG) of the studied sandstones	
	(after Mason and Folk, 1958)	78
(29):	Average Scatter diagram of sorting (σ_I) versus each of skwness (SKI)	
	and kurtosis (KG) of the studied sandstones, Mason and Folk (1958)	79
(30):	Scatter diagram of skewness (SKI) versus kurtosis (KG) of the	
	studied sandstones. Mason and Folk (1958)	81
(31):	Apolt of inclusive graphic skewness (SKI) versus graphic kurtosis	
	(KG) of the studied sandstones. Mason and Folk (1958)	81
(32):	Bivariant plots of Mean-Size versus standard deviation, (Dune and	
	River plot), after Moiola and Weiser (1968)	83
(33):	Bivariant plots of mean-size versus standard deviation (Beach and	
	River plot), after Moiola and Weiser (1968)	83
(34):	Bivariant plot of Mean size versus inclusive graphic standard	
	deviation, after Friedman (1961)	83
(35):	Bivariant polt of skewness versus standard Deviation after	
	Friedman (1961)	85
(36):	Bivariant polt of skewness versus standard Deviation after	
	Friedman (1967)	85
(37):	Bivariant polt of first percentile versus standard Deviation after	
	Friedman (1967)	86

(38):	Bivariant polt of skewness versus mean size, after	
	Moiola and Weiser (1968)	86
(39):	Bivariant plot of skewness versus mean size after	
	Moiola and Weiser (1968)	88
(40):	Bivariant polt of skewness versus kurtosis after	
	Moiola and Weiser (1968)	88
(41):	Calcareous lithic arenite with pelecypod shell fragments,	
	Gabir Formation, Wadi Essel, SN: 7 pp, x 2.5	103
(42):	Calcareous lithic arenite with partly altered feldspar with	
	sparitic cement, Gabir Formation, Wadi Essel SN: 7, CN. x 2.5	103
(43):	Calcareous lithic arenite with algae (lithophyllum. sp).	
	Gabir Formation, Sherm El-Bahari locality, SN: 2, pp., x 4	105
(44):	Calcareous Feldspathic quartz arenite, notice the polycrystalline	
	quartz grains and sparitic cement. Gabir Formation, Wadi	
•	Abu-Dabbab, SN: 3, CN., X 2.5	105
(45):	The same with plagioclase and clear sparry calcite. CN., X 2.5	106
(46):	Calcareous feldspathic quartz arenite with partially sericitized	
•	microcline and polycrystalline quartz grains embedded in micrite	
	and microsparite. Gabir Formation, Wadi Abu-Dabbab,	
	SN: 5, CN., X 2.5	106
(47):	The same with micritic rims (envelope) around the plagioclase	
	and polycrystalline quartz grains. CN., X 4	107
(48):	The same with micritic and microsparitic rim around the grains.	
	Notice the recrystallization of cement. CN., X 4	107
(49):	The same with phosphatic particle (well rounded, dark, grain at	
	the upper part right), CN., X 4	108
(50):	Gypseous calcareous feldspathic quartz arenite with fine grained	
	quartz and clear gypsum veinlet. Gabir Formation, Wadi	
	Abu-Dabbab, SN: 22, CN., X 4	108
(51):	Calcareous Feldspathic quartz arenite with plagioclase and	
	monocrystalline quartz grains embedded in sparite and microsparite.	
	Gabir Formation, Wadi Abu-Dabbab SN: 19, CN., X 2.5	109

(67):	Gypseous arkosic arenite with fibrous gypsum. Shagra Formation,	
	Wadi Essel, SN: 14, CN., X 2.5	124
(68):	Other part of the same section with partially altered feldspar	
	(orthoclase) and monocrystalline quartz grains. SN: 14, pp., X 2.5	124
(69):	Calcareous arkosic arenite with partially altered feldspar.	
	Shagra Formation, Abu-Dabbab, SN: 30, CN., X 4	125
(70):	Other part of the same thin section clear hornblende grains with	
	its clear 2 sets of cleavage. CN., X 4	125
(71):	Calcareous arkose with partially altered feldspar (sericite).	
	Notice the sparite cement. Shagra Formation, Abu-Dabbab locality	
	SN: 33, CN., X 2.5	128
(72):	Sandy fossiliferous grainstone (sandy biosparite) with algae	
	(Lithophyllum sp.) and Foraminifera (milliolids), Shagra Formation,	
	Wadi Essel, SN: 13, pp., X 2.5	128
(73):	Sandy grainstone with foraminiferal tests and shell fragments.	
	Notice the recrystallization of the shell fragments and the filling	
	of the fossil interspaces with sparitic calcite. Shagra Formation,	
	Wadi Essel, SN: 13, CN., X 2.5	129
(74):	Molluscan biomicrite (Packstone/grainstone), notice the original	
	structure of the Oyster shell fragment and the biginning of the pore	
	filling with drusy calcite at the periphery of the pore spaces,	
	Shagra Formation, Wadi Essel, SN: 18, pp., X 2.5	129
(75):	Sandy coralline grainstone/packstone (coralline algal biomicrite)	
	with large coralline bioclasts and Lithophyllum Sp. Shagra Formation	ı,
	Wadi Essel, SN: 19, pp., X 2.5	130
(76):	Other part of the same section with large bioclasts of	
	Lithophyllum sp. pp., X 2.5	130
(77):	Sandy grainstone/packstone (biomicrite) with phosphatic particle	
	(collophane), Shagra Formation, Wadi Essel, SN: 21, pp., X 2.5	131
(78):	Intraclastic grainstone (intra-sparite) with onchoids. Notice the	
	epitaxial and blocky cement Shagra Formation, Wadi Sherm	
	El-Bahari SN: 9, pp., X 2.5	131
(79):	Algal sandy wackestone/packstone (sandy biomicrite) Shagra	
	Formation Wadi Sherm Fl-Bahari SN: 13 pp. X 2.5	133

(80):	Sandy bioclastic (miliolid) wackestone. Shagra Formation,	
	Wadi Sherm El Bahari, SN: 15, pp., x 2.5.	133
(81):	Sandy porous grainstone (caverneous limestone) with caves.	
	Shagra Formation, Wadi Essel, SN: 22, CN., X 2.5	135
(82):	Algal coralline framestone. Shagra Formation, Wadi Sherm El-Bahari	,
	SN: 13, pp., X 2.5	135
(83):	Framestone (coralline). Shagra Formation, Wadi Sherm El-Bahari,	
	SN: 16, pp., X 2.5	136
(84):	Bufflestone. Shagra Formation, Wadi Abu-Dabbab,	
	SN: 35, CN., X 2.5	136
(85):	Algal coralline bindstone, Shagra Formation, Wadi Sherm El-Bahari,	,
	SN: 14, pp., X 2.5	138
(86):	Oolitic grainstone/packstone. Shagra Formation Wadi Quseir	
	El-Kadium, SN: Q 8,CN.,X 6	138
(87):	Enlarged of the same section X 20	140
(88):	Bufflestone of Raised reefs (Abu Shegeili Formation), Wadi	
	Abu Dabbab, SN: 42', pp., X 2.5	140
(89):	The same with pryozoa and shell fragments, pp., X 2.5	141
(90):	Bufflestone with fine to medium-grained, monocrystalline quartz	
	grains. Pleistocene Raised reefs of Abu Shegeili Formation,	
	Abu-Dabbab, SN: 42, pp., X 2.5	141
(91):	Goniastrean Framestone. Pleistocene Raised reefs, of Abu-Shegeili	
	Formation, Wadi Quseir El-Kadium, SN: 26, CN., X 6	143
(92):	Favian Framestone. Pleistocene Raised reefs, of Abu-Shegeili	
	Formation, Wadi Sherm El-Bahari, SN: 19, CN., X 6	143
(93):	Sandy wackestone. Pleistocene Raised reefs of Abu-Shegeili	
	Formation, Wadi Quseir El-Kadium, SN: 12, CN., X x 6	144
(94):	Enlarged part of the same. CN., X 20	144
(95):	Molluscan packstone, Pleistocene Raised reefs, of Abu Shegeili	
	Formation, Wadi Quseir ElKadium, SN: Q 11, CN., X 6	146
(96):	Enlarged of the same section. CN., X 20	146
(97):	Fossiliferous/algal (Red algae) grainstone. Pleistocene Raised	
	reefs, of Abu-Shegeili Formation, Wadi Quseir El-Kadium,	
	SN: O5, CN, X 6.	154

(98):	Sandy Fossiliferous packstone (biomicrite) with bioclastics	
	(bivalve, Foraminifera and red algae) embedded in micritic	
	groundmass, notice the partial and complete micritization	
	Shagra Formation, Wadi Essel SN: 18, pp. X 2.5.	154
(99):	Other part of the same with red algae, foraminifera, echinoids and	
	coarse quartz grains and partial recrystallization of micrite and	
	micritization of skeletal particles. pp. X 2.5.	155
(100):	Otherpart of the same thin section, notice the filling of the bivalve	
	by the same micritic and sandy matrix of the whole rock,pp.X2.5.	155
(101):	Sandy packstone (biomicrite), notice the partial recrystallization	
	of the micrite and the shell fragment, Shagra Formation, Wadi	
	Essel, SN: 23, pp., X 2.5.	156
(102):	Algal sandy wackestone, notice the micritization of the bioclastic.	
	Shagra Formation, Wadi Um- Gheig, SN: 9, CN., X 2.5.	156
(103):	Sandy wackestone with polycrystalline quartz grains, notice the	
	partial recrystallization of micrite, Shagra Formation, Wadi	
	Abu-Dabbab, SN: 36, pp., X 2.5.	157
(104):	Sandy packstone (biomicrite), notice the recrystallization of the	
	shell fragments and the filling of the fossil intraspaces with	
	sparite. Shagra Formation, Wadi Essel, SN: 13, pp., X 2.5.	157
(105):	Sandy packstone (Sandy biomicrite) with bivalves, miliolids and	
	Borlis sp., notice the partial recrystallization of the micrite	
	to microsparite. Shagra Formation, Wadi Essel, SN: 23, pp., X 2.5.	162
(106):	Sandy wackestone with shell fragments, notice the recrystallization	
	of the bioclastics, Shagra Formation, Wadi Abu -Dabbab,	
	SN: 36, CN., X 2.5.	162
(107):	Other part of the same thin section, notice the recrystallization	
-	of the bioclastics and onchoids. CN., X 2.5.	163
(108):	Algal sandy wackestone, notice the partial recrystallization of	
	micritic matrix, Shagra Formation, Wadi Um-Gheig, SN:9,pp., X 4	163
(109):	Bufflestone with miliolids, notice the micritization of miliolids	
	and the other bioclasts, Shagra Formation, Wadi Abu-Dabbab,	
	SN: 34, CN., X 2.5	164