

Effect of germanium complexes on hepatocellular carcinoma cell line

A thesis submitted for the degree of Master of Science as a partial fulfillment for requirements of the Master of Science

By

Iman Ismail Taha

Under supervision of

Prof. Dr. Nadia Y.S. Morcos

Professor of Biochemistry
Faculty of Science Ain Shams
University

Prof. Dr. Abdelfathah Mohsen Badawi

Prof. of Applied Chemistry

Egyptian Petroleum Research Institute

Prof. Dr. Abeer Mostafa Ashmawey

Professor of Medical Biochemistry

Cancer Biology Department

National Cancer Institute

Cairo University

Department of biochemistry

Faculty of science

Ain Shams University

List of content

Subject	Page
List of abbreviations	i
List of tables	iii
List of figures	V
Abstract	viii
1-Review	1
1.1.Cancer	1
1.2.Liver cancer	13
1.3.germanium complexes	23
1.4.Vitamin C	27
1.5.experimental cell lines	30
2-Materials and methods	33
2.1.Materials and instruments	33
2.1.1.Drugs	33
2.1.2.Hepatic carcinoma cell lines	33
2.1.3.Animals	34
2.1.4.List of chemicals	35
2.1.5.List of instruments	36
A.In Vitro	36
2.2.Cell culture conditions and procedures	36
2.3.Determination of cytotoxicity of germanium	39
complexes on cell lines using Sulphorhodamine-B	
(SRB) assay	
2.4.Sample preparation for molecular testing	42
2.5.Quantitative detection of human Ki67 by ELISA	43
Technique	
2.6.Quantitative detection of human Bcl2 by ELISA	44
Technique	
2.7.Quantitative detection of human Caspase3 by ELISA	45
Technique	
B.In Vivo	47
2.8.Lethal dose 50	47
2.9.Preparation of Ehrlich ascites carcinoma (EAC)	49
cells	
2.10.Quantitative detection of mouse IL2 by ELISA	50
Technique	
2.11.Quantitative detection of mouse IL6 by ELISA	51
Technique	
C.Statistical Analysis	52
3-Results	53
4-Discussion	85

Summary and conclusion	
References	107
Arabic summary	

List of abbreviation

Abbreviation	Description
ANOVA	Analysis of variance
ATCC	American tissue culture center
Asc	Ascorbic acid
BCC	Basal cell carcinoma
Bcl2	B-cell lymphoma 2
BCLC	Barcelona clinic liver cancer classification
DMSO	Dimethyl Sulfoxide
EAC	Ehrlich ascites carcinoma
EBV	Epstein–Barr virus
ELISA	Enzyme-linked immunosorbent assay
FBS	Fetal Bovine Serum Albumin
Ge	Organogermanium
HBV	Hepatitis B virus
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HepG2	Human liver carcinoma cell line
HEPG2	Human liver carcinoma cell line as per some
	American references
HPV	Human papilloma viruse
IARC	International agency for research on cancer
IC 50	50 % inhibitory concentration
ICC	intrahepatic cholangiocarcinoma
IL2	Interleukin-2
IL6	Interleukin-6
Ki67	cellular marker for proliferation
LD50	Lethal dose 50%
LGDNs	Low grade dysplastic nodules
MTX	Methotrexate
NCI	National cancer institute
NHL	Non Hodgkin lymphoma
NK	Natural killer
PBS	Phosphate buffer saline

RFA	Radiofrequency
RPMI	Roswell Park Memorial Institute (culture medium)
SCC	skin cancer
SRB	Sulphorhodamine-B
TACE	Transarterial chemoembolization
TARE	Transarterial radioembolization
TCA	Trichloroacetic acid
UV	ultraviolet

List of tables

		page
Table 3.1	Determination of IC ₅₀ using different concentration	54
	of tested germanium compounds on surviving	
	fraction of HEPG2 cells following 48 hours	
	treatment	
Table 3.2	Standard curve for Ki67	56
Table 3.3a	Effect of 48 hours treatment with selected	58
	organogermanium complexes and ascorbic acid	
	alone on expression of Ki67 in HEPG2 cell line	
Table 3.3b	Effect of 48 hours treatment with selected	59
	organogermanium complexes and ascorbic acid	
	combined on expression of Ki67 in HEPG2 cell line	
Table 3.4	Changes in the inhibitory effect of complexes on	60
	Ki67when combined with ascorbic acid	
Table 3.5	Standard curve for Bcl-2	61
Table 3.6a	Effect of 48 hours treatment with selected	62
	organogermanium complexes and ascorbic acid	
	alone on expression of Bcl-2 in HEPG2 cell line	
Table 3.6b	Effect of 48 hours treatment with selected	63
	organogermanium complexes + ascorbic acid	
	combined on expression of Bcl-2 in HEPG2 cell line	
Table 3.7	Changes in the inhibitory effect of complexes on	64
	Bcl-2when combined with ascorbic acid	
Table 3.8	Standard curve of Caspase 3	65
Table 3.9a	Effect of 48 hours treatment with selected	67
	organogermanium complexes and ascorbic acid	
	alone on expression of Caspase 3 in HEPG2 cells	
Table 3.9b	Effect of 48 hours treatment with selected	68
	organogermanium complexes + ascorbic acid	
	combined on expression of Caspase 3 in HEPG2	
	cells	
Table 3.10	Changes in expression of Caspase 3 after treatment	69
	withthe complexes when combined with ascorbic	

	acid	
Table 3.11	Standard curve for Interleukin 2	77
Table 3.12	Effect of treatments with organogermanium	78
	complexes on serum IL-2 levels in EAC bearing	
	mice	
Table 3.13	Effect of treatments with organogermanium	79
	complexes combined with Ascorbic acid (As) on	
	serum IL-2 levels in EAC bearing mice	
Table 3.14	Changes in serum levels of IL-2 after treatment with	80
	organogermanium complexes combined with	
	Ascorbic acid	
Table3.15	Standard curve for Interleukin-6	81
Table 3.16	Effect of treatments with organogermanium	82
	complexes on serum IL-6 levels in EAC bearing	
	mice	
Table 3.17	Effect of treatments with organogermanium	83
	complexes combined with Ascorbic acid (As) on	
	serum IL-6 levels in EAC bearing mice	
Table 3.18	Changes in serum levels of IL-6 after treatment with	84
	organogermanium complexes combined with	
	Ascorbic acid	

List of figures

		page
Figure 1.1	Estimated number of new cases in 2018,	3
	worldwide, all cancers, both sexes, all ages	
Figure 1.2	Estimated number of deaths in 2018, worldwide,	4
	all cancers, both sexes, all ages	
Figure 1.3	Estimated number of new cases in 2018,	5
	worldwide, all cancers, males, all ages	
Figure 1.4	Estimated number of new cases in 2018,	6
	worldwide, all cancers, females, all ages	
Figure 1.5	Estimated number of new cases in 2018, Egypt,	7
	all cancers, both sexes, all ages	
Figure 1.6	Estimated number of new cases in 2018, Egypt,	8
	all cancers, males, all ages	
Figure 1.7	Estimated number of new cases in 2018, Egypt,	9
	all cancers, females, all ages	
Figure 1.8	Cancer risk factors	12
Figure 1.9	HCC staging	15
Figure 1.10	HCC treatment	19
Figure 1.11	Germanium compounds	25
Figure 3.1	IC ₅₀ of the 12 organogermanium complexes on	55
	HEPG2 cells after 48 hours	
Figure 3.2	Standard curve for Ki67	56
Figure 3.3	Effect of 48 hours treatment with selected	59
	organogermanium complexes and ascorbic acid	
	alone and their combination on expression of	
	KI67 in HEPG2 cells	
Figure 3.4	Changes in the effect of complexes on Ki67when	60
	combined with ascorbic acid	
Figure 3.5	Standard curve for Bcl-2	61
Figure 3.6	Effect of 48 hours treatment with selected	63
	organogermanium complexes and ascorbic acid	
	alone and their combination on expression of	
	KI67 in HEPG2 cells	

Figure 3.7 Changes in the effect of complexes on Bcl- 2when combined with ascorbic acid Figure 3.8 Standard curve of Caspase 3 Figure 3.9 Effect of 48 hours treatment with selected organogermanium complexes and ascorbic acid	65
Figure 3.8 Standard curve of Caspase 3 Figure 3.9 Effect of 48 hours treatment with selected	65
Figure 3.9 Effect of 48 hours treatment with selected	65
	~~
organogermanium complexes and ascorbic acid	68
alone and their combination on expression of	
Caspase 3 in HEPG2 cells	
Figure 3.10 Changes in expression of Caspase 3 after	69
treatment with the complexes when combined	
with ascorbic acid	
Figure 3.11 Effect of administration of Ge (arginine)	73
900mg/kg, Ge (adenosine) 250mg/kg,	
doxorubicin 5mg/kg and their combination with	
ascorbic acid 400mg/kg on Ehrlich ascites	
bearing mice survival rate	
Figure 3.12 Effect of administration of Ge (arginine)	74
900mg/kg, Ge (adenosine) 250mg/kg,	
doxorubicin 5mg/kg and their combination with	
ascorbic acid 400mg/kg on Ehrlich ascites	
bearing mice change in weight	
Figure 3.13 Effect of administration of Ge (arginine)	75
900mg/kg, Ge (adenosine) 250mg/kg,	
doxorubicin 5mg/kg and their combination with	
ascorbic acid 400mg/kg on Ehrlich ascites	
bearing mice ascites volume	
Figure 3.14 Effect of administration of Ge (arginine)	76
900mg/kg, Ge (adenosine) 250mg/kg,	
doxorubicin 5mg/kg and their combination with	
ascorbic acid 400mg/kg on Ehrlich ascites	
bearing mice ascites dead cells	
Figure 3.15 Standard curve for IL-2	77
Figure 3.16 Effect of administration of Ge (arginine)	79
900mg/kg, Ge (adenosine) 250mg/kg,	
doxorubicin 5mg/kg and their combination with	
ascorbic acid 400mg/kg on serum IL-2	
expression level in Ehrlich ascites bearing mic	
Figure 3.17 Changes in serum levels of IL-2 after treatment	80

	with organogermanium complexes combined	
	with Ascorbic acid	
Figure 3.18	Standard curve for Interleukin-6	81
Figure 3.19	Effect of administration of Ge (arginine)	83
	900mg/kg, Ge (adenosine) 250mg/kg,	
	doxorubicin 5mg/kg and their combination with	
	ascorbic acid 400mg/kg on Ehrlich ascites	
	bearing mice IL6 expression level	
Figure 3.20	Changes in serum levels of IL-6 after treatment	84
	with organogermanium complexes combined	
	with Ascorbic acid	

Acknowledgement

Firstly, I would like to start my acknowledgement by thanking Allah for achieving what I have accomplished so far.

Second, I would like to express my sincere felling of gratitude to my advisors; **Prof. Nadia Morcos** for her insightful comments and guidance throughout the thesis, **Prof. Abdel Fattah Badawy** for the help and cooperation provided in times of needs, and last but not least **Prof. Abeer Ashmawy** for providing me with the opportunity to join her team, giving me access to research facilities and supporting me through this thesis which was a part of a research project supported by Science and Technology Development Fund (Egyptian Academy of Scientific Research).

As no achievement can be attained without love and support, I want to thank my lovely supportive parents who bear with me all this time. This is for the long sleepless nights you spent tutoring me as a kid. I would like to thank my brother and sister for spiritually supporting me through life. For my friends and lab mate thank you for the long discussions, the work and all the fun we had along the way.

Aman Taha

Abstract

Background and aim: Organogermanium (Ge) complexes are used as dietary supplement. Studies revealed that Ge complexes exhibited analgesic, anti-inflammatory, antioxidant, immune-modulating, antiviral, and anticancer activity. Ascorbic acid is an essential vitamin for human body it is well known with its antioxidant activity. High doses of ascorbic acid showed anticancer activity in different cancer cells. The aim was to determine the antitumor effect of organogermanium complexes, in vitro and in vivo.

Methods: The effect of 12 Ge complexes was tested on HEPG2 cell line, the inhibitory concentration 50 (IC50%) was calculated for each of the complexes. The best 4 complexes, with least IC₅₀, were used for further studies. For the in vivo experiments, 2 complexes were chosen and tested on mice bearing Ehrlich ascites carcinoma. Their effect on EAC and the immune response interleukin 2 (IL-2) and interleukin 6 (IL-6) were compared to that of doxorubicin.

Results: The results were compared to doxorubicin as positive control. The four complexes were tested alone or combined with high dose of ascorbic acid. The results showed a strong antitumor activity of the Ge-complexes. IC₅₀ values were less than that of doxorubicin, indicating a stronger inhibition of tumor growth. Furthermore, a significant decrease was observed in the proliferation marker Ki67, and the anti-apoptotic marker bcl-2, together with an increase in the apoptotic marker caspase3. The combination with ascorbic acid

increased the activity of some complexes acting in synergetic way. The in vivo results revealed an increase in the survival rate of mice treated with the complexes than the untreated group. When compared to doxorubicin; the positive control, the complexes showed a comparable effect on mice survival, ascites volume, and number of dead cells; whether alone or combined with vitamin C. Furthermore, a decrease in IL-2 and IL-6 levels was observed, indicating a decrease in cancer progression.

Conclusion: The present results showed the potential anticancer activity of germanium complexes, however, their effect on the whole body compared to the well-known doxorubicin needs further investigations.

1-Review

1.1.Cancer

1.1.1.Definition

Cancer is a general term for a group of diseases that affect any part of the body. It is the uncontrolled growth and spread of abnormal cells with the ability to invade or spread to other parts of the body. This process is known as metastasizing. Metastases are a major cause of death from cancer (WHO, 2018).

The basic abnormality resulting in the development of cancer is the continual unregulated proliferation of cancer cells and the lack of responding appropriately to the signals that control normal cell behavior. Cancer cells grow and divide in an uncontrolled manner, invading normal tissues and organs and eventually spreading throughout the body. The loss of growth control by cancer cells is the result of abnormalities accumulating in multiple cells, which affect the cell behavior, an important aspect distinguish cells their that cancer from normal counterparts (Cooper & Hausman, 2016).

1.1.2. Classification

Cancers are classified according to the type of cell from which they arise, there are more than 100 distinct types of cancer that