سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

POSTNATAL STRUCTURE AND DIFFERENTIATION OF THE EPITHELIAL CELLS OF THE EPIDIDYMIS OF ALBINO RATS AND THE EFFECT OF VASECTOMY ON EPIDIDYMIS AND TESTIS

Thesis

Submitted in Partial Fulfillment of the M.D. in Anatomy

By ISSAM MOHAMED EL-SAYED EID

M.B.B.Ch. M.Sc. Anatomy

Supervisors

PROF. DR. ABD EL-WANEES, A.M. AL-AWDAN

Professor and Head of Anatomy Department Benha Faculty of Medicine Zagazig University

PROF. DR. AHMED MOSTAFA KAMAL

Professor and Head of Anatomy Department Al-Azhar Faculty of Medicine Al-Azhar University

DR. TALAAT MOSTAFA MOHAMED

Assistant Professor of Anatomy Benha Faculty of Medicine Zagazig University

DR. SALEH SAYED IDRIS

Lecturer of Anatomy Benha Faculty of Medicine Zagazig University

BENHA FACULTY OF MEDICINE
ZAGAZIG UNIVERSITY
1998

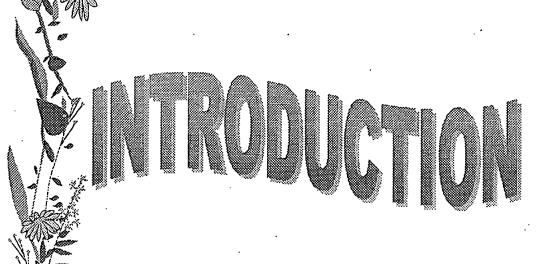
1494c

ACKNOWLEDGEMENT

THANKS TO GOD

I wish to express my deep appreciation and gratitude to **PROF. DR. ABD EL-WANEES AL-AWDAN**, Professor and Head of Anatomy Department, Benha Faculty of Medicine, for giving me the privilege of working under his supervision, inspite of his great responsibilities, he was very generous with his time and great knowledge.

I have the greatest pleasure to express my deepest thanks and gratitude to *PROF. DR. AHMED MOSTAFA KAMAL*, Professor and Head of Anatomy Department, Al-Azhar Faculty of Medicine, for his kind supervision and continuous guidance and help throughout this work.


I would like to express my sincere thanks and gratitude to **DR. TALAAT MOSTAFA MOHAMED**, Assistant Professor of Anatomy Department, Benha Faculty of Medicine for his kind supervision and continuous guidance and help throughout this work.

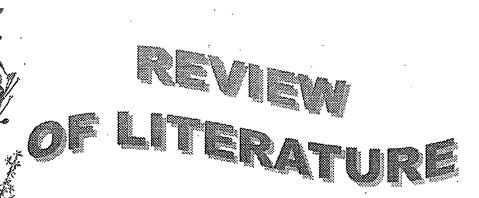
I would like to express my sincere thanks and gratitude to **DR. SALEH SAYED IDRIS**, Lecturer of Anatomy Department, Benha Faculty of Medicine for his kind supervision and continuous guidance and help throughout this work.

Finally I wish to extent my sincere thanks to the staff members and my colleagues of Anatomy Department, Benha Faculty of Medicine and Al-Azhar Faculty of Medicine for their help and encouragement.

CONTENTS

	Page
Introduction	1
Review of literature	2
-Anatomy of the epididymis	2
- Histology of the adult epididymis	4
- Development of the epididymis	10
- Functional aspects of the epididymis	14
- Histology of the adult testis	17
- Vasectomy	24
Material and methods	32
Results	40
Discussion	100
Summary and Conclusion	115
References	118
Arabic Summary	

INTRODUCTION


The epididymis has secretory and absorptive functions that are believed to be related to the maturation and storage of sperms. These functions are carried out by the various cells of the epididymal epithelium (Hermo, et al., 1992). The postnatal development of these various cells of the rat epididymis has been studied at the level of the light microscope, but the information on the cytological aspects of postnatal epididymal development are lacking.

Because of the increasing use of vasectomy in human, it is important to determine the effects of vasectomy on the parts of the male reproductive tract. The local changes have been reported on the testis, epididymis and vas deferens (*Flickinger*, et al., 1993). Most of these studies reported the early or late effects of vasectomy on testis or epididymis. However, the pathogenesis of the testicular and epididymal response to vasectomy have been overlooked by light and electron microscopic analysis.

AIM OF THE WORK

This work aimed to study the followings:

- 1- Differentiation of the epithelial cells lining the rat epididymis at the 2nd, 5th and 8th postnatal weeks by light and electron microscopic analysis.
- 2- The light and electron microscopic analysis of the testis and epididymis of adult control rats.
- 3- The effects of vasectomy on the testis and epididymis at intervals 1,2 and 5 months by light and electron microscopic analysis.

ANATOMY OF THE EPIDIDYMIS

The mammalian epididymis is a single highly convoluted duct, closely applied to the testis and embedded in a variable amount of the epididymal fat. Depending on the species, the epididymis may be either firmly or loosely bound to the tunica albuginea of the testis. In human and monkey, the epididymis is firmly attached to the tunica albuginea of the testis by fibrous tissue, while in rat, the epididymis is loosely attached to the tunica albuginea (Hamilton, 1972). The epididymis of the adult rat lies posterolateral to the testis, while the vas (ductus) deferens lies posteromedial to the epididymis, a position similar to that found in the human (Hebel and Stromberg, 1976).

Generally, the epididymis can be divided grossly into three major parts; the head (caput), body (corpus) and tail (cauda). In adult rat epididymis, the caput is a semilunar in shape and connected to the cranial pole of the testis by the efferent ductules (vasa efferentia). The caput becomes narrow to form the corpus. The boundary between the caput and the corpus is indistinct grossly. The corpus continues as the club-shaped tail which extends 5-11mm beyond the caudal pole of the testis. The rat epididymal duct measures about 400cm, while the length of human epididymal duct varies between 500-600cm (Hebel and Stromberg, 1976).

The efferent ductules of the rat consist of five to seven ductules which arise from the rete testis and emerge on the supero-lateral aspect of the testis and extend through the epididymal fat to empty into the ductus epididymis (Fawcett, 1994). These efferent ductules become gradually

fuse with one another to form the single highly convoluted ductus epididymis (Oke, et al., 1988). The efferent ductules of the human consist of 12-20 ductules which perforate the tunica albuginea of the testis to join the epididymis. They are at first straight, then become enlarged and convoluted to form conical lobules which make up the head of the epididymis. These lobules open into the single duct of the epididymis whose coils form the epididymal body and tail (Williams, et al., 1995).

Vascular supply:

The rat epididymis is supplied by branches of the testicular and deferential arteries. The caput and the corpus epididymis receive arterial blood via a single branch from the testicular artery, which divides into the superior and inferior epididymal branches. The cauda epididymidis is supplied by branches from the deferential artery. There is some degree of anastomosis between the branches supplying the epididymis, although collateral branches between testicular and epididymal vessels are few. The veins of the epididymis drain into the pampiniform plexus, which becomes the spermatic vein. The lymphatics of the epididymis drain into the external iliac and internal iliac lymph nodes (Hamilton, 1972).

Nerve supply:

The epididymis receives both sympathetic and parasympathetic innervation from nerves derived from spermatic nerves, which in turn, arise from the superior hypogastric plexus and from the vesical plexus (*Tanagho*, 1986).

HISTOLOGY OF THE ADULT EPIDIDYMIS

The ductus epididymis consists of an epithelial lining which rests on the basement membrane and is surrounded by smooth muscle fibers and connective tissue. The epithelium is actually pseudostratified columnar epithelium because it contains both small basal cells and tall columnar cells. In the rat epididymis, five epithelial cell types have been identified, namely the principal, basal, apical, light and halo cells (Hoffer, et al., 1973).

1- Principal cells:

They are the major constituent of the epididymal epithelium. They are very tall in the caput, then gradually decrease in height along the duct, to become low columnar in the corpus and cuboidal in the cauda. They extend throughout the full thickness of the epithelium from the basal lamina of the duct to the lumen (Hoffer, et al., 1973). The free surface of each principal cell bears a tuft of very long, non motile stereocilia which in electron micrographs appear to be microvilli and have no basal bodies nor internal microtubules. Like microvilli, they contain an axial bundle of actin filaments that extends downward into a terminal web in the apical cytoplasm (Fawcett, 1994). The stereocilia differ from microvilli as they branch repeatedly near their bases. The cell surface between the in contour with numerous invaginations, stereocilia is irregular suggesting that these cells take up fluid from the lumen by pinocytosis (Oke, et al., 1988).