Evaluation of Color Stability, Water Sorption, Solubility and Bond Durability of an Adhesive after Adding Epigallocatechin-Gallate in Two Different Concentrations

Thesis Submitted to Biomaterials Department The Faculty of Dentistry Ain-Shams University

In partial fulfillment of the requirements for the Master Degree in Biomaterials Science

By

Nadia Taha El-Ansary
B.D.SC Ain-Shams University 2009

Biomaterials Department Faculty of Dentistry Ain-Shams University 2019

Supervisors

Prof. Dr. Tarek Salah El Dine Hussein

Professor of Dental Materials
Biomaterials department Faculty of
dentistry Ain-shams University

Dr. Mohamed Salah Nassif

Associate Professor of Dental Materials
Biomaterials Department Faculty of
Dentistry Ain-shams University

Acknowledgement

First, I would like to express my greatest gratitude to the Almighty **ALLAH** for giving me the strength, knowledge, ability and opportunity to undertake this research study and to complete it satisfactorily. Without his blessings, this achievement would not have been possible.

However, conducting the research and writing this thesis required the patience, persistence and motivation of many people whom I would like to personally acknowledge. First, I would like to extend my deepest thanks to my supervisors:

Prof. Dr. Tarek Salah El Dine Hussein, Professor of Biomaterials, Faculty of dentistry, Ain-Shams University, for his highly appreciated guidance and endless support throughout this work. His valuable experience and honorable supervision will always be remembered with a lot of gratitude.

Dr. Mohamed Salah Nassif, Associate Professor of Biomaterials, Faculty of dentistry, Ain-Shams University, for sparing no effort or time in guiding me throughout this work. The door to his office was always open for me. His constant encouragement, understanding, patience and healthy criticism added considerably to my experience.

These acknowledgements would be incomplete without expressing my deepest thanks and appreciation to all my professors and colleagues in the Biomaterials department for always supporting and guiding me especially **Dr. Aliaa Hazem**

Sakr, Assistant Lecturer of Dental Biomaterials, Faculty of Dentistry, Ain-Shams University and **Dr. Lamia Mostafa Abd El-Aziz**, Assistant Lecturer of Dental Biomaterials, Faculty of Dentistry, Ain-Shams University

I would also like to acknowledge **Dr. Ahmed Abdou**, Teaching Assistant of Dental Biomaterials, Faculty of Dentistry, Modern University for Technology and Information for his great help in this thesis statistics.

Dedicated to

My dad

Who raised me to be a hard worker, my support system who always pushes me forward

My mom

My comfort zone, who always loves, supports and inspires me in every step I take

My brother

My backbone, who helps me a lot with his love, encouragement, patience and hi-tech services

My husband

My life partner and best friend who is always there for me

My children

Ibrahim and Celine who are the source of my joy and happiness

My grandmother

Who is always there for me with her love, prayers and blessings

My aunt

Who is always a source of love and support trying to make things easier for me

My cousins

Who always support and help me in every possible way

List of contents

Contents

List of contents	VI
List of figures	X
List of tables	XII
List of abbreviations	XIII
Introduction	1
Review of literature	3
1 Dental adhesive:	3
1.1 Components of dental adhesive:	3
1.1.1 Resin monomer:	3
1.1.2 Initiators:	6
1.1.2.1 Photo-initiators	6
1.1.2.2 Chemical initiators	7
1.1.3 Inhibitors	8
1.1.4 Solvents	9
1.1.5 Fillers	11
1.2 Classification of dental adhesives	11
1.2.1 Classification according to the interaction with sm	ear layer12
1.2.2 Classification based on generation systems	13
1.2.3 Classification according to mechanism of adhesi	i on 15

	1.2.3.1 Etch and rinse adhesive system	15
	1.2.3.2 Self etch adhesive	17
<u>2</u>	Factors that affect the durability of resin dentin bond	18
	2.1 Hydrolytic degradation due to water sorption:	18
	2.2 Incomplete resin infiltration	19
	2.3 Collagenolysis by Endogenous MMPs and Cysteine Cathepsi	ns 19
3	Strategies to optimize the durability of the resin dentin bond.	21
	3.1 Ethanol wet bond	21
	3.2 Remineralizing the hybrid layer collagen	22
	3.2.1 Remineralizing by fluoride containing adhesives	23
	3.2.2 Remineralization by adhesives containing bioactive pa	articl23
	3.2.3 Biomimetic remineralization	23
	3.3 Matrix metalloproteinase inhibition and collagen cross lin	ıkin24
4	Epigallocatechin Gallate	28
	4.1 Separation and purification of EGCG	28
	4.2 Uses of EGCG in dentistry	29
	4.3 Effect of EGCG on bonding to dentin	31
<u>5</u>	Color stability of dental adhesives	32
	5.1 Color stability testing	32
	5.1.1 Colorimeters	33
	5.1.2 Digital cameras	33
	5.1.3 Spectrophotometers	33

6 Water sorption and solubility of dental adhesive	34
7 Bond durability testing	35
7.1 Shear bond strength	35
7.2 Tensile bond strength	37
8 Aging protocol	38
Aim of the study	39
Material and methods	40
1. EGCG/adhesive mixture preparation	41
2. Testing methodology	42
2.1 Color stability testing	42
2.2 Water sorption and solubility of the adhesive testing	45
2.3. Micro-tensile bond strength testing	50
Results	60
1. Results of color stability test	60
a. Effect of the adhesive of different groups on color difference	60
b. Effect of aging on the color difference within the same group	64
2. Results of water sorption and solubility test	65
a.Water sorption test	65
b.water solubility test	67
c.Eluted components	68
3. Results of microtensile bond strength (Mpa)	71

a. Effect of the adhesive of different groups on the microtensile bond strength	
b. Effect of aging time on the microtensile bond strength within the sa	me
group	73
4. Failure mode analysis and reults of scanning electron microscope	75
<u>Discussion</u>	77
Summary and conclusions	83
References	85
صخلملا يبر علا	١١

List of figures

Figure 1: IPS emax disc	42
Figure 2: Agilent Cary 5000 spectrophotometer	43
Figure 3: The disc after being placed in distilled water for 1 year	45
Figure 4: Teflon mold placed on a celluloid strip and filled with adhe	siv46
Figure 5: Adhesive discs placed within the dessicator	47
Figure 6: Initial weight of an adhesive disc	47
Figure 7: Adhesive disc in distilled water	48
Figure 8: Vertex 70 FTIR spectrometer	49
Figure 9: Teflon mold with corresponding metal ring and paralleling screview)	
Figure 10: Isomet 4000	51
Figure 11: Flat dentin surface	52
Figure 12: A block of 4 mm high resin composite+tooth+acrylic	53
Figure 13: Gripping attachment (Front view) with perpendicular axia grooves	
Figure 14: The obtained beams	55
Figure 15: Measuring the beam's thickness at the composite-dentine in mm)	-
Figure 16: Beam mounted on Geraldeli's jig	56
Figure 17: Zapit glue kit	57
Figure 18: Jig mounted on the Universal testing machine	58
Figure 19: Bluehill Lite machine operating software results	58
Figure 20: Column chart showing mean color difference (ΔE) betwee without adding the adhesive and 24 hours after adding it	

Figure 21: Column chart showing mean color difference (ΔE) between the discs without adding the adhesive and 6 months after adding it63
Figure 22: Column chart showing mean color difference (ΔE) between the discs without adding the adhesive and 1 year after adding it63
Figure 23: Column chart showing mean weight difference over volume in μg/mm ³ for different groups (ANOVA test)66
Figure 24: Column chart showing mean weight difference over volume in μg/mm ³ for different groups (ANOVA test)68
Figure 25: Infrared spectrum of distilled water
Figure 26: Infrared spectrum of distilled water after removing the disc of group 169
Figure 27: Infrared spectrum of distilled water after removing the disc of group 270
Figure 28: Infrared spectrum of distilled water after removing the disc of group 370
Figure 29: : Column chart showing mean microtensile bond strength values in Mpa for different groups in different aging periods72
Figure 30: Line chart showing mean microtensile bond strength values in Mpa for each adhesive group in different observation times74
Figure 31: Image of the fractured beam using Stereomicroscope and showing mixed mode of failure75
Figure 32: SEM image 1200 x showing fractured surface having remnants of composite and adhesive with open dentinal tubules showing mixed mode of failure76
Figure 33: SEM image 1200x showing fractured composite surface indicating cohesive failure in the composite76

List of tables

Table 1: Materials, brand name, manufacturer, main constituents, lot number and expiry date40
Table 2: The mean color difference (ΔE) of the emax discs before and after adding the adhesive for 24 hours in different groups61
Table 3: The mean color difference (ΔE) of the emax discs before and after adding the adhesive for 6 months in different groups61
Table 4: The mean color difference (ΔE) of the emax discs before and after adding the adhesive for 1 year in different groups62
Table 5: The mean color difference (ΔΕ) between the discs without adding the adhesive and after adding it for different adhesive groups in different aging periods
Table 6: Mean weight difference over volume (W2-W1/V) in μg/mm ³ for different groups (ANOVA test)65
Table 7: Table (7) Mean weight difference over volume (W1-W3/V) in μg/mm ³ for different groups (ANOVA test)67
Table 8: Mean microtensile bond strength values in Mpa for different adhesive groups in different aging periods (ANOVA test)72
Table 9: Mean microtensile bond strength values in Mpa at different aging periods for different adhesive groups74

List of Abbreviations

ACP: Amorphous calcium phosphate

Bis-GMA: Bisphenol A diglycidyl methacrylate

BHT: Butylated hydroxy toluene

BAC: Benzalkonium chloride

BPDM: Biphenyl dimethacrylate

CHX: Chlorhexidine

CQ: Camphroquinone

HEMA: 2-hydroxyethyl methacrylate

EDC: 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

EDTA: Ethylene diamine tetraphosphonic acid

EGCG: Epigallocatechin gallate

EGDMA: Ethylene glycol dimethacrylate

FEA: Finite element analysis

GAGs: Glucosaminoglycans

GTase: Glucosyltransferase

GBR: Guided bone regeneration

H3PO4: Phosphoric acid

MDPB: 12-methacryloyloxydodecylpyridinium bromide

MEP: 2-methacryloyloxyethyl dihydrogen phosphate

MEHQ: Monomethyl ether hydroguinone

MMA: Methyl methacrylate

Mpa: Mega pascal

MMPs: Matrix metalloproteinases

NaOCI: Sodium hypochlorite

PENTA: Dipentaerythritol pentaacrylate monophosphate

phenyl P: 2-methacryloxyethyl phenyl hydrogen phosphate

PPD: 1-phenyl-1,2propanedione

PVPA: Polyvinyl phosphonic acid

SIC: Silicon carbide

SD: Standard deviation

SEM: Scanning electron microscope

TCB: Butan-1,2,3,4-tetracarboxylic acid di-2-hydroxyethylmethacrylate ester

TCP: Tricalcium phosphate

TBB: Tri-n-butyl borane

TEGDMA: Triethylene glycol dimethacrylate

TPO: 2, 4, 6-Trimethylbenzoyldiphenylphosphine oxide

UDMA: Urethane dimethacrylate

4-MET: 4-methacryloyloxyethyl trimellitic acid

10-MDP: 10-methacryloyloxydecyl dihydrogenphosphate

μTBS: Micro tensile bond strength

Introduction

Introduction

Nowadays adhesives are used in most of the dental practices and their development led to many improvements in restorative and preventive dentistry.⁽¹⁾

In 1955, Buonocore⁽²⁾ succeeded in bonding resin to enamel surface through acid etching of the enamel by 85% phosphoric acid to provide a good surface for resin bonding and to improve retention of resin to pits and fissures and in late 1960 Buonocore proposed that bonding to dentin can be done too. Bonding to dentin is more difficult than bonding to enamel due to its organic and humid nature, the density of dentinal tubules and the water content differs according to the dentinal depth, also dentin undergoes change with age in an asymmetrical physiological aging process, leading to an increase of dentin thickness and decrease in dentin permeability. ⁽³⁾

In 1970 Eick used scanning electron microscope (SEM) to identify the smear layer that block the adhesion to dentin and the etch and rinse concept was then introduced in 1980.⁽³⁾ Nakabayashi, in 1982 described the hybrid layer and how the resin infiltrates the acid etched dentin forming a hybrid layer that is reinforced with collagen fibrils.⁽²⁾

Dental adhesives have developed a lot since then but some problems arised that could affect the durability of the bond such as, water sorption resulting in plasticization of the dental adhesive with hydrolytic degradation and decreasing its physical properties and bond strength⁽⁴⁾, also incomplete resin infiltration into dentin which is due to the discrepancy between both dentin demineralization and resin infiltration leading to nanoleakage within the hybrid layer and the adhesive layer.⁽⁵⁾

MMPs are released from odontoblasts in the form of proenzymes that require activation to degrade extracellular matrix components. The degradation of exposed collagen produced by matrix metalloproteinases (MMPs) affects the durability of resin dentin bond and many techniques were developed to overcome it as using MMPs inhibitors and collagen cross linking (6,7)

Flavonoids are considered one of the MMPs inhibitors and green tea extract is an important source of flavonoids, it is composed of