

Serum Androgen Levels as a marker for the severity of preeclampsia

Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics and Gynecology**

By

Joseph Adel Ibrahim Johny

M.BB.Ch, Assiut University, 2013 Resident of Obstetrics and Gynecology 6 Oct.Dokki Hospital (Health Insurance)

Supervised By

Prof. Hassan Awwad Bayoumy

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Prof. Wessam Magdy Abuelghar

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Haitham Abd Elmohsin El-Sabaa

Assistant Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2019

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my sincere gratitude to Dr. Hassan Awwad Bayoumy, Professor of Obstetrics & Gynecology, Faculty of Medicine – Ain Shams University, under his supervision, I had the honor to complete this work, I am deeply grateful to him for his professional advice, guidance and support.

My deep gratitude goes to Dr. Wessam Magdy Abuelghar, Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University, for his precious efforts and tireless guidance and meticulous supervision throughout this work.

A special word of gratitude is due to Dr. Haitham Abd Elmohsin El-Sabaa, Assistant Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University, who has read and commented on several chapters

I can't forget to thank Dr. Mai Farouk Shalaan, specialist in clinical pathology & chemistry department - 6th Oct Dokki Hospital, for the efforts and time she has devoted to accomplish this work.

Last but not least, I like to thank all my Family, especially my Parents and my wife for their kind care, help and encouragement. I would like to thank my patients, who were the corner stone of this study.

🖎 Joseph Adel Ibrahim

List of Contents

Title	Page
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Protocol	-
Introduction	1
Aim of the Work	5
Review of Literature	6
Severe Preeclampsia	6
Markers for severe preeclampsia	13
• Androgens	24
Patients and Methods	32
Results	38
Discussion	62
Summary	71
Conclusion & Recommendations	73
References	74
Arabic Summary	1

List of Abbreviations

Abbr. Eitle

ACOG : American College of Obstetricians and Gynecologists

ADMA : Asymmetric dimethylarginine

ANOVA : Analysis of variance

AT1-AA : Angiotensin II Type I Receptor Activating Autoantibodies

AUC : Area under curve
BMI : Body mass index
BP : Blood pressure
C4bp : C4 binding protein

CBC : Complete Blood Count

CI : Confidence interval CRP : C- Reactive protein

DBP : Diastolic Blood Pressure

DDAH : Dimethylarginine dimethylaminohydrolase

Df : Degrees of freedom

DHEA : Dehydroepiandrosterone

DHEA-S: Dehydroepiandrosterone sulphate

DNA : Deoxyribonucleic acid

E2 : Estradiol

ELISA : Enzyme Linked Immunosorbent Assay

eNOS : Endothelial nitric oxide **FAI** : Free androgen index

FE3 : Free estriol

Ft : Free Testosterone GA : Gestational age

GH : Gestational hypertension

HELLP: Hemolysis, Elevated Liver enzymes and Low Platelet syndrome

HTN : Hypertension

IBM : International business machines

IL-6 : Interleukin 6

mGH : Mild gestational hypertensionMMP-9 : Matrix metalloproteinase-9

mPE : Mild preeclampsia

NEO : Neopterin

NGAL : Neutrophil gelatinase – associated lipocalin

NK : Natural Killer NO : Nitric oxide

NOS : Nitric oxide synthetase

PCOS : Polycystic ovary syndrome

PE : Preeclampsia

PDGF : Platelet-derived growth factor

Pg : Progesterone

PIGF : Placental Growth Factor

PIH : Pregnancy induced hypertension
PRMTs : Protein arginine methyltransferases

PSU : Pilo-Sebaeous Unit PV : Predictive value RNA : Ribonucleic acid

ROC : receiver-operating characteristic

SBP : Systolic Blood Pressure

SD : Standard deviationSE : Standard errorsEng : Soluble endoglin

sFlt-1 : Soluble fms-like tyrosine kinase I receptor

sGH : Severe gestational hypertensionSHBG : Sex hormones binding globulin

SOGC : Society of Obstetricians and Gynecologists of Canada

sPE : Severe preeclampsia

SPSS : Statistical package for social science

STARD : Updated list of essential items for reporting diagnostic accuracy studies

TNF-alpha: Tumor necrosis factor alpha

TXA2 : Thromboxane A2

VEGF : Vascular endothelial growth factor

VSIG 4 : V-set and immunoglobulin domain-containing protein 4

List of Tables

Title	Page
Table (1): Comparison of the three study groups: Numerical variables	39
Table (2): Serum testosterone level in the three study groups	40
Table (3): Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with or without PE using serum testosterone level	42
Table (4): Correlation between total serum testosterone and other quantitative or ordinal variables	48
Table (5): Correlation between free serum testosterone and other quantitative or ordinal variables	49
Table (6): Multivariable binary logistic regression analysis for the relation between total serum testosterone and PE as adjusted for the effect of possible confounding factors	50
Table (7): Multivariable binary logistic regression analysis for the relation between free serum testosterone and PE as adjusted for the effect of possible confounding factors	51
Table (8): Multivariable binary logistic regression analysis for the relation between total serum testosterone and severe PE as adjusted for the effect of possible confounding factors	52
Table (9): Multivariable binary logistic regression analysis for the relation between free serum testosterone and severe PE as adjusted for the effect of possible confounding factors	53

List of Figures

Title	Page
Figure 1: Abnormal placentation in pre-eclampsia	8
Figure 2: Summary of the pathogenesis of preeclampsia	9
Figure 3: Steroidogenesis	25
Figure 4. Mean total serum testosterone level in the three study groups. Error bars represent the standard error of the mean (SE).	41
Figure 5. Mean free serum testosterone level in the three study groups. Error bars represent the standard error of the mean (SE).	41
Figure 6. Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with or without PE using total serum testosterone level.	44
Figure 7. Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with or without PE using free serum testosterone level.	45
Figure 8. Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with severe PE and those with mild or no PE using total serum testosterone level.	46
Figure 9. Receiver-operating characteristic (ROC) curve analysis for discrimination between patients with severe PE and those with mild or no PE using free serum testosterone level.	47

Introduction

Hypertensive disorders are one of the most important complications during pregnancy, which in combination with hemorrhage and infections make a dangerous triad, making them the major cause of maternal morbidity and mortality in 3.7–5% of all pregnancies (*Sharifzadeh et al.*, 2012).

Hypertensive disorders during pregnancy are classified into 4 categories, as recommended by the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy:

- Chronic hypertension
- Preeclampsia-eclampsia
- Preeclampsia superimposed on chronic hypertension
- Gestational hypertension (transient hypertension of pregnancy or chronic hypertension identified in the latter half of pregnancy). This terminology is preferred over the older but widely used term "pregnancy-induced hypertension" (PIH) because it is more precise (*Mammaro et al., 2009*).

In 2008, the Society of Obstetricians and Gynecologists of Canada (SOGC) released revised guidelines that simplified the classification of hypertension in pregnancy into 2 categories, preexisting or gestational, with the option to add "with preeclampsia" to either category if additional maternal or fetal symptoms, signs, or test results support this (*Magee et al.*, 2008).

Chronic hypertension is defined as blood pressure exceeding 140/90 mm Hg before pregnancy or before 20 weeks' gestation. When hypertension is first identified during a woman's pregnancy and she is at

less than 20 weeks' gestation, blood pressure elevations usually represent chronic hypertension.

In contrast, new onset of elevated blood pressure readings after 20 weeks' gestation mandates the consideration and exclusion of preeclampsia (*Phillips*, 2015).

Chronic Hypertension

Chronic hypertension is a primary disorder in 90-95% of cases and may be either essential (90%) or secondary to some identifiable underlying disorder, such as renal parenchymal disease (eg, polycystic kidneys, glomerular or interstitial disease), renal vascular disease (eg, renal artery stenosis, fibro-muscular dysplasia), endocrine disorders (eg, adrenocorticosteroid or mineralocorticoid excess. pheochromocytoma, hyperthyroidism or hypothyroidism, hormone growth excess. hyperparathyroidism), coarctation of the aorta, or oral contraceptive use. About 20-25% of women with chronic hypertension develop preeclampsia during pregnancy (*Roberts*, 2008).

Chronic hypertension occurs in up to 22% of women of childbearing age, with the prevalence varying according to age, race, and body mass index. Population-based data indicate that approximately 1% of pregnancies are complicated by chronic hypertension, 5-6% by gestational hypertension without proteinuria, and 1-2% by preeclampsia (*Roberts*, 2008)

Gestational Hypertension

Gestational hypertension refers to hypertension with onset in the latter part of pregnancy (>20 weeks' gestation) without any other features of preeclampsia, and followed by normalization of the blood pressure postpartum. Of women who initially present with apparent gestational

hypertension, about one third develops the syndrome of preeclampsia. As such, these patients should be observed carefully for this progression. The pathophysiology of gestational hypertension is unknown, but in the absence of features of preeclampsia, the maternal and fetal outcomes are usually normal (*Hedderson and Ferrara*, 2008).

Gestational hypertension may, however, be a harbinger of chronic hypertension later in life (*Chang et al.*, 2003).

Furthermore, hypertension before pregnancy or during early pregnancy is associated with a twofold increased risk of gestational diabetes mellitus. Transient hypertension of pregnancy (ie, the development of isolated hypertension in a woman in late pregnancy without other manifestations of preeclampsia) is associated strongly with later development of chronic hypertension (*Hedderson and Ferrara*, 2008).

Although maternal diastolic blood pressure greater than 110 mm Hg is associated with an increased risk for placental abruption and fetal growth restriction, superimposed pre-eclamptic disorders cause most of the morbidity due to chronic hypertension during pregnancy (*Chang et al.*, 2003).

Preeclampsia is defined as the new onset of hypertension and either proteinuria or end organ dysfunction after 20 weeks of gestation in a previously normotensive woman. In 2013, the American College of Obstetricians and Gynecologists removed proteinuria as an essential criterion for diagnosis of preeclampsia. They also removed massive proteinuria (5 grams/24hours) and fetal growth restriction as possible features of severe disease because massive proteinuria has a poor correlation with outcome and fetal growth restriction is managed similarly

whether or not preeclampsia is diagnosed. Oliguria was also removed as a characteristic of severe disease (*Townsend et al.*, 2016).

Hypertension before 20 weeks' gestation is almost always due to chronic hypertension; new-onset or worsening hypertension after 20 weeks' gestation should lead to a careful evaluation for manifestations of preeclampsia (*Carson and Ramus*, 2016).

Signs suggesting a secondary medical cause of chronic hypertension

Centripetal obesity, "buffalo hump," and/or wide purple abdominal striae suggest glucocorticoid excess; other clinical signs may demonstrate hyperthyroidism, hypothyroidism, or growth hormone excess. In addition, a systolic bruit heard over the abdomen or in the flanks suggests renal artery stenosis, whereas radio femoral delay or diminished pulses in the lower versus upper extremities suggests coarctation of the aorta (*Carson and Ramus*, 2016).

Aim of the Work

This study aims to assess if serum total and free testosterone could be used as a marker for the severity of preeclampsia when compared to control group.

Hypothesis

In women with preeclampsia, there is an elevated serum total and free testosterone levels which may be implicated in its pathogenesis.

Research question

Will serum total and free testosterone affect the severity of preeclampsia?

Preeclampsia

Preeclampsia is a common complication of pregnancy associated with high maternal morbidity and mortality and intrauterine fetal growth restriction. There is extensive evidence that the reduction of utero-placental blood flow in this syndrome results from the toxic combination of hypoxia, imbalance of angiogenic and anti-angiogenic factors, inflammation, and deranged immunity (*Eiland et al.*, 2012).

Definition:

Preeclampsia is defined as the presence of a systolic blood pressure \geq 140 mm Hg or a diastolic blood pressure \geq 90 mm Hg, on 2 occasions at least 4 hours apart in a previously normotensive patient. In addition to the blood pressure criteria, proteinuria of \geq 0.3 grams in a 24-hour urine collection, a protein (mg/dl)/creatinine (mg/dl) ratio of 0.3 or higher, or a urine dipstick protein of 1+ is required to diagnose preeclampsia. **Eclampsia** is defined as seizures that can't be attributable to other causes, in a woman with preeclampsia (*Jeyabalan et al.*, *2013*).

Epidemiology

Overall, 10%–15% of maternal deaths are directly associated with preeclampsia and eclampsia. Some epidemio-logical findings support the hypothesis of a genetic and immunological etiology. The risk of preeclampsia is 2 to 5 times higher in pregnant women with a maternal history of this disorder. Depending on ethnicity, the incidence of preeclampsia ranges from 3% to 7% in healthy nulliparous and 1% to 3% in multiparas (*Uzan et al., 2011*).

Risk factors

- Null parity (3.1)
- Age more than 35 or less than 20 years old (3:1)
- Black race (1.5:1)
- Family history (5:1)
- Chronic renal disease (20:1)
- Chronic hypertension (10:1)
- Anti-phospholipid syndrome (10:1)
- Diabetes mellitus (2:1)
- Twin gestation but unaffected by zygosity (4:1), triplet gestation carries a greater risk than twin, suggesting that increased placental mass plays some role.
- Obesity (3:1)
- Genetic factors: there may be several genes. Associations have been described between risk for preeclampsia and polymorphisms of the genes or factor V Leiden, angiotensinogen (homozygosity for angiotensinogen gene T235 (20:1) heterozygosity for angiotensinogen gene T235 (4:1)) and endothelial nitric oxide synthetase, although these associations have not been confirmed consistently in other populations
- History of preeclampsia in the previous pregnancies (7:1)
- Smoking during pregnancy protects against preeclampsia
- Molar pregnancy
- High altitude has also been shown to increase the incidence of preeclampsia, and is attributed to greater placental hypoxia
- Smaller uterine artery diameter and lower uterine artery blood flow.
- Collagen vascular disease (Yogev et al., 2010).

Pathophysiology

The mechanisms by which preeclampsia occurs is not certain, and numerous maternal, paternal, and fetal factors have been implicated in its development.

The factors currently considered to be the most important include the following: Maternal immunologic intolerance, abnormal placental implantation, genetic, nutritional, environmental factors, cardiovascular and inflammatory changes (*Cunningham et al.*, 2010).

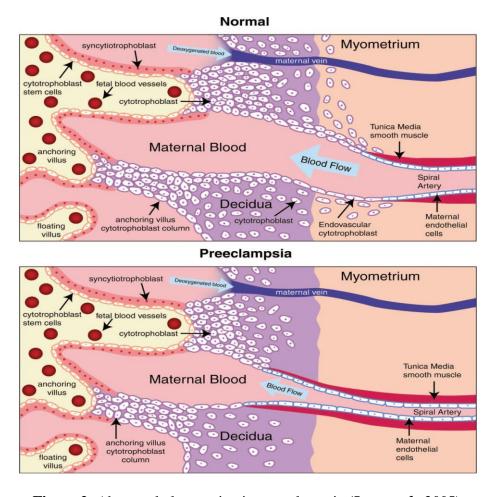


Figure 2: Abnormal placentation in pre-eclampsia (Lam et al., 2005).