SERUM AND TISSUE OSTEOPONTIN IN PATIENTS WITH KELOIDS

Thesis

Submitted for Partial Fulfillment of Master Degree in Dermatology

By

Christina Hany Riad Moawad

Resident of Dermatology, Venereology and Andrology Misr University for Science and Technology M.B.B.ch

Supervised by

Dr. Maha Adel Shaheen

Professor of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

Dr. Marwa Salah El Din Zaki

Assistant Professor of Dermatology, Venereology and Andrology Faculty of Medicine - Ain Shams University

Dr. Tarek Nabil Ahmed

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine - Misr University for Science and Technology

Faculty of Medicine - Ain Shams University
2019

Acknowledgment

Before and above all thanks to "Allah" to whom I always pray to bless my work.

It was an honor and great pleasure to work under the kind supervision of **Prof. Or. Maha Shaheen**, Prof. of Dermatology and Venerology, Faculty of Medicine, Ain Shams University. She offered me her expert advice, invaluable experience and great help. No words would fulfill the feelings I have towards her continuous support and great encouragement, which I have felt during our work.

Words stand short when they come to express my great appreciation and deep gratitude to **Dr. Marwa Salah Eldeen Zaki**, Assistant Professor of Dermatology and Venerology, Faculty of Medicine, Ain Shams University and **Dr. Tarek Mabil**, Lecturer of Dermatology and Venerology, Faculty of Medicine, Misr University for Science and Technology, for their kind supervision and invaluable advice, great help, useful instructions, valuable suggestions, close observation and patience during the progress of this work.

I would like to express my appreciation to all members of Dermatology Department, Faculty of Medicine, Ain Shams University and Misr University for Science and Technology for their great help and support.

Last but not least, I would like to thank and dedicate this work to my supportive husband, daughter "Eliana" and son "Anthony", my loving family especially my parents, friends and colleagues for their great support, without which I wouldn't have been able to do this work.

Christina Hany Riad

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Keloids	5
Osteopontin	27
Role of Osteopontin in Wound Healing and Sca	
Formation	40
Patients and Methods	47
Results	60
Discussion	77
Conclusion	83
Recommendations	84
Summary	85
References	88
Arabic Summary	

List of Tables

Table No.	Title Pag	ge No.
Table (1):	Hypertrophic scars and keloids epidemiological, clinical and histological	1
T. 1.1 (2)	differences	
Table (2):	Major cell types that contribute to the	
T 11 (0)	inflammatory phase	
Table (3):	Molecules that have a role in wound	
7 0 - 1-1 - (4)	healing	
Table (4):	The Vancouver Scar Scale	
Table (5):	Patient and Observer Scar Assessmen Scale	
Table (6):	Materials provided for OPN assay by	
	ELISA	•
Table (7):	Descriptive statistics of the studied Case	S
	(Keloid)	
Table (8):	Comparative statistics of serum OPN	
	level in patient with keloid versus the	e
	control group	63
Table (9):	Comparative analysis of serun	n
	Osteopontin levels in different subgroup	S
	of patients with keloid (Mann-Whitney	y
	test; ANOVA)	65
Table (10):	Comparative analysis of tissue	
	Osteopontin levels in different risk	K
	factors for different risk subgroups of	
	patients with keloid (Mann-Whitney test	
	ANOVA)	
Table (11):	Correlation between serum and tissu	
	osteopontin level and scoring scales fo	
	Keloid (Spearman's correlation test)	
Table (12):	Correlation between serum and tissu	
	osteopontin levels in Patients with	
	KeloidS (Spearman's correlation test)	75

List of Figures

Fig. No.	Title	Page	No.
Figure (1):	Dermal biopsy locations from hocontrols and keloid patients	with	
Figure (2):	An illustrated representation of dermal scar types, as commonly ob after a mid sternal incision post-o	raised served	11
	surgery		13
Figure (3):	Differences between normal wound hand excessive scar formation over time	_	14
Figure (4):	A schematic pictorial representation relative expression, distribution		
	organisation of collagen I and III		21
Figure (5):	Structural features of OPN		29
Figure (6):	The different means by which		
	regulates immune and inflammatory		
Figure (7):	OPN reagent preparation		56
Figure (8):	Serum and Tissue Osteopontin le patients with Keloid versus Control.		63
Figure (9):	Comparative analysis of Osteopontin levels with gender		66
Figure (10):	Comparative analysis of Osteopontin levels with family histo	serum	
Figure (11):	Comparative analysis of Osteopontin levels with different ty	serum	
	vascularity.	_	67
Figure (12):	Serum Osteopontin protein lev patients with keloid; the patients	el in	
	painful keloid versus those with painful ones.	non-	67
Figure (13):	Serum Osteopontin protein lev different subgroups in patients with	rel in keloid;	
	the categorization was based on Pli	-	00
	subtypes		68

List of Figures (Cont...)

Fig. No.	Title	Page	No.
Figure (14):	Comparative analysis of	tissue	
	Osteopontin levels with gender		71
Figure (15):	Spearman's correlation between	serum	
	Osteopontin level and VSS in patien	ts with	
	Keloid.		74
Figure (16):	Spearman's correlation between	serum	
	Osteopontin level and POSAS in pa	atients	
	with Keloid.		74
Figure (17):	Spearman's correlation between serv	ım and	
	tissue Osteopontin level in patient	s with	
	Keloid		76

List of Abbreviations

Abb.	Full term
AK	Actinic Keratosis
	Basal cell carcinoma
	Behcet disease
	Sialoprotein I
	\dots Carboxypeptidase B
	Connective tissue growth factor
	Denderitic cells
DNA	Deoxyribonucleic acid
	Extracellular matrix
<i>EGF</i>	Epidermal growth factor
ETA-1	Early T-lymphocyte activation
	Fibroblast growth factor
HLA	Human leucocytic antigen
<i>IFN</i>	
<i>IGF</i>	Insulin-like growth factor
<i>IL</i>	Interleukin
<i>iNOS</i>	Inducible nitiric oxide synthetase
<i>iOPN</i>	Intracellular osteopontin
<i>MCP</i>	Monocyte chemoattractant protein
<i>MMP</i>	Matrix metalloproteinase
OPN AS ODN	Osteopontin antisense oligodeoxynucleotides
<i>OPN</i>	Osteopontin
<i>OPN-FL</i>	Full length osteopontin
<i>OPN-R</i>	Thromin cleaved osteopontin
<i>OPNs</i>	Secreted form of osteopontin
<i>PAI</i>	Plasminogen activator inhibitor
<i>PDGF</i>	Platelet derived growth factor
POSAS	Patient and observer scar assessment scale
PV	Pemphigus vulgaris

List of Abbreviations (Cont...)

Abb.	Full term
<i>RGD</i>	. Arginine-Glycine-Aspartic acid
SCC	. Squamous cell carcinoma
<i>SLE</i>	. Systemic lupus erythematosus
SPP1	Secreted phosphoprotein 1
	Systemic sclerosis
	Transforming growth factor
<i>Th</i>	, 88 ,
	Tissue inhibitor of matrix metalloproteinases
	Tumor necrosis factor
	. Urokinase plasminogen activator
<i>UV</i>	
	· Vitamin D response element
	· Vascular endothelial growth factor
	· Vancouver scoring system

INTRODUCTION

keloid is an abnormal fibrous tissue outgrowth which extends beyond the borders of the wound. It does not usually regress spontaneously and possesses high chances of recurrence after excision. Keloids grow faster and become raised and thickened within 3 to 4 weeks (*Uzair et al.*, 2015). They can occur anywhere on the body but the most common sites are the sternum, shoulders, earlobes, and cheeks (Juckett and Hartman-Adams, 2009).

Keloids are only found in humans and occur in 1% to 16% of the population and tend to be familial. People with darker pigmentation are more likely to develop keloids. It is thought that men and women are equally affected. However, women present more frequently than men, possibly due to cosmetic concerns. The average age at onset is 10 to 30 years. People older than 65 years rarely develop keloids. There is a lack of population-based studies, and much of the epidemiology remains anecdotal rather than scientific (Cavalié et al., 2015).

Excessive keloids form as a result of aberrations of physiologic wound healing and may develop following any insult to the deep dermis, including burn injury, lacerations, abrasions, surgery, piercings and vaccinations. By causing pruritus, pain and contractures, excessive scarring can dramatically affect a patient's quality of life, both physically and psychologically (Gauglitz et al., 2013). They may also

occur after acne formation or chickenpox infection and sometimes keloids can be formed spontaneously in sternal area in susceptible individuals (Monarca et al., 2012).

Most keloids develop within 3 months of the injury but some may occur up to 1 year after skin trauma. There are several theories of keloid etiology, most of which are related to fibroblast dysfunction. Keloid fibroblasts, when compared with fibroblasts isolated from a normal wound, overproduce type I procollagen and express higher levels of certain growth factors including vascular endothelial growth factor (VEGF), transforming growth factor (TGF) \(\beta\)1 and \(\beta\)2, and plateletderived growth factor (PDGF). In addition, these cells have lower rates of apoptosis and demonstrate a down regulation of apoptosis related genes, including p53 (Chike-Obi et al., 2009).

Osteopontin (OPN) is a multifunctional matricellular protein produced by a wide range of cells including osteoclasts, osteoblasts, T cells, macrophages, dendritic cells, and fibroblasts (Anborgh et al., 2011) and researches have defined a role for osteopontin in maintenance and reconfiguration of tissue integrity during inflammatory processes (O'Regan & Berman, 2000).

inflammation Osteopontin promotes through the recruitment of macrophages, dendritic cells and T cell and contributes to the development of Th1 cytokine responses

(Rittling, 2011). Moreover, it regulates fibroblast behavior and myofibroblast differentiation (Lenga et al., 2008).

Expression of OPN in normal, healthy skin is low but increased during wound healing (Chang et al., 2008).

Osteopontin has a key role in the synthesis and turnover of matrix components in both human and murine models, thus it was speculated that serum OPN level might have an impact on the resulting scar after wound healing (Pardo et al., 2005).

Based on previous studies suggesting a role of OPN in fibrous tissue formation (Miragliotta et al., 2016), we hypothesize that OPN may contribute to inflammationassociated fibrosis and accordingly keloid formation in skin wounds.

AIM OF THE WORK

The aim of this study is to compare serum and tissue osteopontin levels in patients with keloids with age and sex-matched healthy controls, and to correlate their levels with the extent of keloid formation according to specific scoring systems (Vancouver Scar Scale "VSS" and Patient and Observer Scar Assessment Scale "POSAS").

Chapter 1 KELOIDS

eloids are defined as excessive scar tissue that invade beyond the borders of the initial insult and do not regress spontaneously. They recur in 45–100% of cases following excision. This is due to the fact that the new closure is exposed to the same mechanical, immunological and biochemical forces as the original scar (*Juckett and Hartman-Adams*, 2009).

Areas particularly prone to keloids include the earlobes, chest, shoulders, upper back and posterior neck. Minor keloids are focally raised, pruritic scars that can occur up to one year following the initial injury. Major keloids are large, raised (>5 mm), dark red scars associated with pain and pruritus and continue to increase in size over years (McGoldrick et al., 2017).

The first description of keloids concerned surgical techniques used in Egypt in 1700 BC. In 1806, Alibert used the term cheloide, derived from the Greek chele, or crab's claw, to describe the lateral growth of tissue into unaffected skin (Al-Attar et al., 2006).

Many years later, studies differentiated excessive scarring into hypertrophic and keloid scar formation. By their definition, both scar types rise above skin level, but while hypertrophic scars do not extend beyond the initial site of

Review of Literature

injury, keloids typically project beyond the original wound margins. Nevertheless, clinical differentiation between hypertrophic scars and keloids can be problematic (Meenakshi et al., 2005).

Epidemiology of keloid:

Keloids are seen in people of all races and skin types. The prevalence of keloid formation in the general population is relatively low, with a higher incidence in persons of color. Specifically, African Americans have demonstrated an incidence of 6 to 16 percent, likely a result of underlying genetic propensity toward scarring. Furthermore, the overall incidence of hypertrophic scarring is highly raised following burn or thermal injuries (*Kirby et al.*, 2016).

Keloids tend to affect both sexes equally, although there is a higher incidence of women presenting with keloids, possibly secondary to the cosmetic implications associated with the disfigurement (Roseborough et al., 2004).

It is rare in albinos of all races. Familial predisposition, with both dominant and recessive modes of inheritance have been recognized (*Gauglitz et al.*, 2011).

Etiology of keloid:

Several etiological factors for keloids have been proposed in the past including; the presence of foreign bodies

Review of Literature —

in the wound site, infection, tension present in the local skin environment, delayed healing, prolonged excessive inflammation and abnormal epithelial–mesenchymal interactions (*Alonso et al.*, 2008).

Keloid growth may also be stimulated by various hormones. Results from some studies have suggested a higher incidence of keloid formation during puberty and pregnancy, with a decrease in size after menopause. Also, immunologic associations of keloids had been proposed (Schierle et al., 1997).

One study revealed a direct correlation between the incidence of keloid formation and levels of serum immunoglobulin E, and another study found a higher incidence of allergic symptoms in patients with keloids (*Placik and Lewis*, 1992).

Genetics of keloid:

There is a familial predisposition to keloid scarring. TGF- β has previously been implicated in keloid pathogenesis. There is an association between keloid development and polymorphisms within the TGF- β 1, - β 2, - β 3 and TGF- β 3 receptor genes (*Bayat et al.*, 2005).

Keloid has an autosomal dominant inheritance pattern with an identified linkage to chromosome 2q23 and