

Verification of Hearing Aid Fitting using Aided Auditory Steady-State Response In Children

Thesis

Submitted for Partial Fulfillment of the Master Degree of Audiology

By Yasser Shebl Mohammed (M.B.,B.Ch)

Under supervision of

Prof. Dr. Wafaa EL Kholy

Professor of Audiology ENT Dept. – Audiology unit Faculty of Medicine - Ain Shams University

Dr. Fathy Naeem Abdelhalim

Assistant Professor of Audiology ENT Dept. – Audiology unit Faculty of Medicine - Ain Shams University

Dr. Yasser Nafie Mohammed

Consultant of Audiology Military Medical Academy

Faculty of Medicine Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Wafaa El Kholy**, Professor of Audiology ENT Dept. – Audiology Unit Faculty of Medicine - Ain Shams University for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Fathy Maeem**Abdelhalim, Assistant Professor of Audiology ENT Dept.

– Audiology unit Faculty of Medicine - Ain Shams University for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Yasser Mafie**Mohammed, Consultant of Audiology Military Medical

Academy his great help, outstanding support, active participation and guidance.

Yasser Shebl

List of Contents

Title	Page No.
List of Tables	Error! Bookmark not defined.
List of Figures	Error! Bookmark not defined.
List of Abbreviations	Error! Bookmark not defined.
Introduction and Rationale	1
Aim of the Work	4
Review of Literature	
 Verification of Hearing 	Aid Fitting5
 Aided Auditory Steady 	State Response24
Subject and Methods	24
Results	78
Discussion	95
Conclusions	104
Recommendations	105
Summary	106
References	109
Arabic Summary	_

List of Tables

Table No.	Title	Page No.
Table (1):	Mean and standard deviation of P audiometric thresholds (dB HL) : group patients	in study
Table (2):	Percentage of detectability of belaided behavioral and aided A different frequencies:	SSR at
Table (3):	Distribution of No response in belaided behavioral and aided ASSR and 4000 Hz.	at 2000
Table (4):	Descriptive statistics of aided be thresholds and aided ASSR	
Table (5):	Descriptive statistics of aided be thresholds and aided Est ASSR	
Table (6):	Correlation between aided behavior and aided ASSR (ASSR) thresholds 1000, 2000 and 4000 Hz.	s at 500,
Table (7):	Correlation between aided behavior and aided Estimated ASSR (Esthresholds at 500, 1000, 2000 and 4	ASSR)
Table (8):	Correlation coefficient (r ²) and regression between Aided be threshold, aided ASSR and Eaided ASSR.	ehavioral stimated
Table (9):	Comparison between configura curves and the ASSR at frequencies	different

List of Tables Cont...

Table No.	Title	Page No.
Table (10):	Comparison between hearing aid with and without frequency lo technique on aided behavioral thr ASSR of different studied frequencie	owering reshold.
Table (11):	Correlation coefficient between duration of use of aiding device of a patients and the difference in ASS ABT.	studied

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Typical arrangement of probe microphones for real ear meas	
Figure (2):	The positive (Pa, Pb, Pc) peaks (Na, Nb, Nc) troughs of the A overlap at about 25 msec in the 100 msec poststimulus and	ABR and MLR tervals within
Figure (3):	Example of 40-Hz amplity (AM) stimulus construction by of three pure tones	y the addition
Figure (4):	500 Hz carrier frequency tone the outer and middle ear into the	•
Figure (5):	ASSR response to a 2000 Hz (100 Hz MF	
Figure (6):	Chirp stimulus	38
Figure (7):	Most common types of stimular an ASSR response as seen in and frequency domains	the temporal
Figure (8):	Displays how the four carr presented simultaneously stimulate the frequency rebasilar membrane best turfrequencies	and thus egions of the ned to these
Figure (9):	An example of an EEG samp vector on a polar plot where the vector indicates phase information length of the vector indicates of the response	ne angle of the nation and the the magnitude

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (10):	This figure shows a comparison of frequency and monaural multistimulation techniques in the techniques of the frequency domains	ltifrequency mporal and
Figure (11):	Schematic representation of pelectrodes for ABR and ASSR meand connecting them to the pream	easurements
Figure (12):	Phase locked response	71
Figure (13):	Trials Done Window	
Figure (14):	Random response	73
Figure (15):	The 3 result options of GSI AUD form of phase locked, random and	ERA in the
Figure (16):	Estimated audiogram window	74
Figure (17):	Scatter plot between ABT and A	
Figure (18):	Scatter plot between ABT and A 500Hz.	
Figure (19):	Scatter plot between ABT and A	
Figure (20):	Scatter plot between ABT and A	
Figure (21):	Scatter plot between ABT and 2000 Hz	
Figure (22):	Scatter plot between ABT and A 2000Hz	
Figure (23):	Scatter plot between ABT and 4000Hz	
Figure (24):	Scatter plot between ABT and A	0.1

List of Abbreviations

Abb.	Full term
ABR	. Auditory Brainstem Response
	. Auditory compound action potential
	. Articulation index
	. Amplitude modulated
	. Amphitude modulated . Auditory steady-state response
	· · · · · ·
	. Carrier frequency
	Decibels hearing level
	. Electroencephalography
	. Event-related potential
	. Frequency modulated
	. Intelligent Hearing System
LDL	. Loudness Discomfort Level
LGOB	. Loudness Growth in ½ octave Bands
MCL	. Most Comfortable Level
MFs	. Modulation frequencies
MLR	. Middle Latency Response
REAG	Real ear aided gain
RSG	. Repeating sequence gated
	Satisfaction with Amplification in Daily Life
	questionnaire
SDT	. Speech detection threshold
SIR	. Speech intelligibility Rating
	Speech reception threshold
	Steady State Evoked Potentials
WHF	. Wurzhurg Hoer-: Feld

Introduction and Rationale

Hearing is critical for the development of speech, language, communication skills, and learning. The earlier that hearing loss occurs in a child's life, the more serious is the effect on the child's development (Yoshinaga-Itano, 2004).

Early detection and intervention through the concept of universal newborn hearing screening programs are believed to be critical steps toward proactive management of those children Speech-Language-Hearing **Joint** (American Association. Committee on Infant Hearing Position Statement, 1994; American Academy of Pediatrics, 1999, Harlor & Bower, 2009).

The implementation of newborn hearing screening programs has reduced the age of identification of hearing loss and thereby age of intervention significantly (Uus & Bamford, 2006, Sininger et al., 2009;), the median age of fitting now ranging between four and six months (England, UK: Uus & Bamford, 2006, California, USA: Sininger et al., 2009, Auerbach, & Gershkovich, 2009, Ontario, Canada: Bagatto et al., 2010, NewYork, USA: Spivak, Sokol,).

Management of hearing loss as early as possible, includes fitting the infant with an aid that properly compensates for the loss and verifying that the aid provides adequate benefit (Scollie & Seewald, 2001).

The process of hearing aid fitting involves selection and verification of hearing aid output to match prescribed targets

for a given hearing loss (American Academy of Audiology [AAA], 2013; JCIH, 2007). Hearing evaluation using behavioral test methods is a challenge in young infants and therefore hearing aids are usually fitted based on estimated hearing thresholds (Bagatto et al., 2005).

Consequently, there is a great need for an objective tool which can help to predict the aided and unaided audiogram and which, when coupled with the electroacoustic measurements, can provide sufficient data for appropriate hearing aid prescription (Littman et al., 2002).

Although the possibility of using ABR for functional gain measurements was demonstrated, the widespread use of this technique did not occur due to a number of technical challenges: First, the click stimulus is very brief and can be significantly distorted both in the sound-field speaker and in the hearing aid. The resultant stimulus artifacts may obscure interpretation of the responses (Garnham et al., 2000). Second, the fact that hearing aids react differently to rapidly changing stimuli, such as those used to elicit an ABR, than to more continuous stimuli which leads to distortion of the stimulus (Mahoney, 1985).

Third, the click ABR is mainly related to high frequency gain, and correlation between wave V latency and loudness is low, particularly when there is a sloping hearing loss (*Picton et* al., 1998). Finally, the brief stimuli that are optimal for ABR the hearing instrument's recordings may not activate

compression circuitry in the same way as longer duration speech sounds and may be treated as 'noise' by hearing instruments with speech detection algorithms. For these reasons attempts to use the ABR to evaluate hearing instruments have largely been abandoned (Brown et al., 1999; Alcantra et al., 2003; Purdy et al., 2005).

More recently, the advent of the auditory steady-state response (ASSR) as a clinical tool for objective audiometry in infants has shown a promise as a useful way of determining aided thresholds (Picton et al., 1998; Rance & Rickards, 2002).

Unlike the ABR, the ASSR is evoked by continuous stimuli modulated in amplitude and frequency. After the initial few stimuli, the response stabilizes and thereafter contains a constituent frequency component that remains constant in amplitude and phase over time (Picton et al., 1998). These stimuli are therefore unlikely to be distorted by amplification in either the sound-field speaker or hearing aid, and frequencyspecific thresholds can be measured across the frequencies important for speech (*Picton et al.*, 1998).

Hence, the current study is conducted in an attempt to assess the role of ASSR as an objective tool in assessment and verification of aided performance in a group of children with severe to profound sensorineural hearing loss.

AIMS OF THE WORK

- 1- To investigate the value of ASSR as an objective tool in the assessment of aided response in children with hearing loss.
- 2- To compare results of aided auditory steady-state response (ASSR) threshold and behavioral aided response in children.

Chapter 1

VERIFICATION OF HEARING AID **FITTING**

Hearing Aid Evaluation

Saunders and Cierkowski, (2002) conducted a classification of the current approaches to hearing aid evaluation as following:

A- Subjective Approaches to Hearing Aid Evaluation:

Audition is a sensory experience. Thus, auditory awareness could be best evaluated through the psychoacoustic measures that involve the entire hearing mechanism (Duffy, 1987).

Subjective approaches include threshold measurements, suprathreshold measurements comfortable (most level. loudness discomfort level). loudness scaling, speech audiometry and self-assessment scale.

1- Threshold measurements:

Pascoe (1975) popularized the term "functional gain" to define the psychoacoustic sound field measurement of the difference between the unaided and aided hearing threshold levels. Since then, many audiologists continue to use this procedure as a classical approach to assess the effective hearing aid gain. It has the advantages of being simple, flexible and any stimuli can be used such as narrow band noise (*Pascoe*, 1975); warble pure tones (*Duffy*, 1978) or amplitude modulated. pure tones (*Goldberg*, 1981). Most importantly is that it represents what the individual actually hear, and can be used in adult and children (*Lewis*, 2000).

2- Suprathreshold measurements:

Most Comfortable Level (MCL) and Loudness Discomfort Level (LDL) measurements, individual determination of most comfortable level (MCL) and Loudness Discomfort Level (LDL) represents a complementary step in the hearing aid evaluation. Mueller and Hawkins (1990) studied the role of loudness discomfort level (LDL) determination in adjusting the maximum power output setting of the hearing aid. They concluded that loudness -discomfort level measurements provided more accuracy than loudness discomfort level estimation from the pure-tone hearing thresholds. This was done by the use of the best instructional set, the most valid stimuli, and the best delivery system. MCL determination was not popular because it: was variable, time consuming, and could not be used for children (*Lewis*, 2000).

3- Loudness Scaling:

Loudness scaling is a psychophysical method used as a means for driving the relationship between the physical intensity of sound and their subjective loudness correlates (*Hellbriick and Moser*, 1985; Pascoe, 1988; Moore, 1997). Loudness Scaling of narrow band stimuli offered another