

FACULTY OF ENGINEERING

Electrical Power and Machines Engineering

A current controlled technique of the Modular Multilevel Converter

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science in Electrical Engineering

(Electrical Power and Machines Engineering)

by

Eng. Mahmoud Muhammad Magdy Mahmoud El-Zawahry

Bachelor of Science in Electrical Engineering
(Electrical Power and Machines Engineering)
Faculty of Engineering, Ain-Shams University, 2013

Supervised By

Prof Dr. Ahmed Abdel Sattar Abdel Fattah Prof Dr. Mostafa Ibrahim Mohamed Marei

Cairo - (2019)

FACULTY OF ENGINEERING

Electrical Power and Machines

A current controlled technique of the Modular Multilevel Converter

by

Eng. Mahmoud Muhammad Magdy Mahmoud El-Zawahry

Bachelor of Science in Electrical Engineering
(Electrical Power and Machines Engineering)
Faculty of Engineering, Ain-Shams University, 2013

Examiners' Committee

Prof. Dr. Ahmed Abdel Sattar Abdel Fattah	Signature
Electrical Power and Machines , Ain-Shams University	
Prof. Dr. Mostafa Ibrahim Mohamed Marei	
Electrical Power and Machines, Ain-Shams University	

Date: 21 August 2019

EXAMINERS COMMITTEE

Name: Mahmoud Muhammad Magdy Mahmoud El-Zawahry

Thesis title: A current controlled technique of the Modular Multilevel Converter

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Mostafa Saad Abdullah Hamad

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Arab Academy for Science, Technology & Maritime Transport

Prof. Dr. Nagar Hassan Nagar

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

Prof. Dr. Ahmed Abdel Sattar Abdel Fattah

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain shams University

Prof. Dr. Mostafa Ibrahim Mohamed Marei

Professor of Electric Power Electrical Power and Machines department Faculty of Engineering, Ain Shams University

SUPERVISORS COMMITTEE

Name: Mahmoud Muhammad Magdy Mahmoud El-Zawahry

Thesis title: A current controlled technique of the Modular Multilevel Converter

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering.

Name, title and affiliation

Signature

Prof. Dr. Ahmed Abdel Sattar Abdel Fattah

Professor

Electrical Power and Machines department

Faculty of Engineering, Ain shams University

Prof. Dr. Mostafa Ibrahim Mohamed Marei

Professor

Electrical Power and Machines department

Faculty of Engineering, Ain Shams University

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Mahmoud El-Zawahry
Signature
• • • • • • • • • • • • • • • • • • • •

Date: 21 August 2019

Researcher Data

Name : Mahmoud Muhammad Magdy Mahmoud El-Zawahry

Date of birth : 10th July 1991

Place of birth : Cairo

Last academic degree : B.Sc. in Electrical Engineering.

Field of Specialization : Electrical Power and Machines

University issued the degree : Faculty of Engineering, Ain-Shams University

Date of issued degree : 2013

Current job : Business Developer, PV Department at Al-Fanar

Company at KSA.

Thesis Summary

At the beginning of this century, many researchers are focusing their studies on the power electronics converters to improve the advantages of the power electronics converters such as high efficiency, less maintenance, fast dynamic response, low thermal dissipation and compact size. With all these advantages, power electronics converters occupy a great place at the industrial applications, like tractions industry, high voltage DC transmission systems (HVDC), and power conditioners applications, drive control system for electrical motor, power quality industry and electrical vehicles industry. Moreover, smart grid and renewable energy interfacing systems are using these converters greatly to achieve their required functions with high performance and less loss. These converters have many topologies and different types, each type is compatible with several applications. Multi-level converters are the most popular types used at last years, because of high efficiency and ease maintenance. This thesis studies two types of multi-level converters, the modular multi-level converter (MMC) and the Granular Multilevel Converter (GMC).

This thesis proposes a current controlled GMC based on the Ramp Current Control (RCC) technique which is characterized by simplicity and fixed switching frequency. Besides controlling the output currents, the proposed control system for the GMC regulates the submodules capacitors voltages at their desired settings. A proper switching state is selected to keep the sub-module capacitors voltages based on hysteresis capacitor voltages controllers, the required phase voltage level, and the sign of the output current. The reference phase voltages are determined using the RCC to control the d- and q- current components of the GMC in the synchronous frame. These current components are set using two Proportional-Integral (PI) controllers to manage the active and reactive powers fed to grid. The same current controller is applied for the MMC. Simulations results, using EMTDC/ PSCAD, are presented to evaluate the dynamic performance of the proposed systems under different operating conditions. Different test scenarios are conducted under different conditions to evaluate the dynamic behavior of the proposed system. Simulation results show fast dynamic response and accurate performance of the proposed control systems.

Index Terms: Granular Multilevel Converter, Capacitor Voltage Control, Ramp Current Controller, PI Controller.

Acknowledgment

All praise is due to Allah, Most Merciful, and the Lord of the Worlds, who taught man

what he knew not. I would like to thank God Almighty for bestowing upon me the chance,

strength and ability to complete this work.

My sincere gratitude goes to my father, my mother, my family and my wife. This work

would not have been possible without their continuous encouragement, patience, support and

assistance.

My words can't express my gratitude to my advisors: Prof. Dr. Ahmed Abdel-Sattar

Abdel-Fattah, Prof. Dr. Mostafa Ibrahim Marei, whom introduced me to the world of power

electronics and guided me through my research and career to the best. I wouldn't be able to

finish this work without their support, guidance, encouragement and confidence in me. Both of

them treated me not just as their student but also as their son.

Mahmoud El-Zawahry

Cairo, Egypt

August 2019

VIII

TABLE OF CONTENTS

Contents:

List of FiguresX
List of tablesXII
List of AbbreviationsXIV
List of SymbolsXV
Chapter 1: INTRODUCTION
1.1. Background:
1.2. Aim of the research:
1.3. Thesis outline:
Chapter 2: LITERATURE REVIEW
2.1. Two-Level Voltage Source Converters:
2.1.1. Two-level VSC topology overview:
2.1.2. Two-level VSC switching states:
2.2. Multi-Level Voltage Source converters:
2.2.1. Neutral point clamping (NPC) voltage source converter (VSC):1
2.2.2. Capacitor-Clamped or Flying Capacitor Voltage Source Converter (FC-VSC):
2.2.3. Cascaded H-Bridge Voltage Source Converter (CHB-VSC): 1
2.2.4 Modulov Multi Lovel Conventore

2.3. Chapter Summary:	26
Chapter 3: Granular Multilevel Converter (GMC)	27
3.1. Background:	28
3.2. The GMC topology:	31
3.3. GMC Switching Pattern:	36
Chapter 4: THE PROPOSED GRID CONNECTED GMC	42
4.1. Overview:	43
4.2. Ramp Current Control (RCC):	45
Chapter 5: SIMULATION RESULTS	46
5.1. Three sub-modules GMC current controlled grid connected:	47
5.2. Four sub-modules GMC and four level MMC current controlled grid	l connected: 52

List of Figures

Figure 2- 1 Types of voltage source converters (VSC)	5
Figure 2- 2: One-leg of two-level VSC	6
Figure 2- 3: The line voltage output waveform from a single phase Two-Level VSC	6
Figure 2- 4: The three Phase Two-Level VSC.	6
Figure 2- 5: The current direction for two-level VSC	7
Figure 2- 6: Different voltage waveform of multilevel converters	9
Figure 2- 7: THD of the voltage waveform	10
Figure 2- 8: (a) Single phase leg 3-level NPC converter, (b) 3-level NPC converter voltage lever steps, (c) 3-level NPC converter waveform with reference sinusoidal waveform	
Figure 2- 9: Five-level NPC topology	11
Figure 2- 10: Three phase NPC converter	12
Figure 2- 11: FC-VSC structure	14
Figure 2- 12: The three-phase, three-level CHB-VSC	17
Figure 2- 13: MMC structure	20
Figure 2- 14: Sub-module of MMC	22
Figure 2- 15: the switching states of MMC	26
Figure 3- 1 The GMC topology	30
Figure 3- 2: Three states of sub-module	32
Figure 3- 3: The capacitor voltage controllers	34
Figure 3- 4: Voltage levels of four SM GMC	35
Figure 4- 1: The proposed control system for the GMC based on the RCC	45
Figure 5- 1: Dynamic performance of the RCC based GMC.	48
Figure 5- 2 Phase 'a' voltage and current	49
Figure 5- 3: Zoom of Phase 'a' voltage	50
Figure 5- 4 Three-phase output voltages and currents	50
Figure 5- 5: Sub-modules capacitors voltages	51
Figure 5- 7: The reference and output voltage	53
Figure 5- 8: The reference and output voltage of the grid connected GMC	54
Figure 5- 9: The difference between the reference and the output voltage of the grid connected MMC	55

Figure 5- 10: The reference and output voltage of the grid connected GMC	55
Figure 5- 11: The difference between the reference and the output voltage of MMC	56
Figure 5- 12: Three-phase current of the GMC at 75 KW and 0 KVAR	56
Figure 5- 13: Three-phase current of the GMC at 150 KW and 0 KVAR	57
Figure 5- 14: Three-phase current of the GMC at 150 KW and 150 KVAR	57
Figure 5- 15: Three-phase current of the GMC at 150 KW and 150 KVAR	58
Figure 5- 16: Three-phase current of the MMC at 75 KW and 0 KVAR	59
Figure 5- 17: Three-phase current of the MMC at 150 KW and 0 KVAR	59
Figure 5- 18: Three-phase current of the MMC at 150 KW and 150 KVAR	60
Figure 5- 19: Three-phase current of the MMC at 75 KW and 150 KVAR	60
Figure 5- 20: Sub-modules capacitors voltage of phase a of the GMC	61
Figure 5- 21: Sub-modules capacitors voltage of phase b of the GMC	61
Figure 5- 22: Sub-modules capacitors voltage of phase c of the GMC	62
Figure 5- 23: The first sub-modules capacitors voltages for three phase of the GMC	62
Figure 5- 24: The second sub-modules capacitors voltages for three phase of the GMC	63
Figure 5- 25: The third sub-modules capacitors voltages for three phase of the GMC	63
Figure 5- 26: The fourth sub-modules capacitors voltages for three phase of the GMC	64
Figure 5- 27: Sub-modules capacitors voltage of phase a of the MMC	64
Figure 5- 28: Sub-modules capacitors voltage of phase b of the MMC	65
Figure 5- 29: Sub-modules capacitors voltage of phase c of the MMC	65
Figure 5- 30: Circulating current of phase a of MMC	66
Figure 5- 31: Circulating current of phase b of MMC.	66
Figure 5- 32: Circulating current of phase c of MMC	67
Figure 5- 33: The active power fed from the GMC	67
Figure 5- 34: The active power fed from the MMC	
Figure 5- 35: The reactive power fed from the GMC	68
Figure 5- 36: The reactive power fed from the MMC	69

List of tables

Table 2- 1: present the summary of the NPC-VSC switching status cases	13
Table 2- 2: represents various voltage source types by different companies [28]	15
Table 2- 3: VSC projects	16
Table 2- 4: Summarize between the three previous VSC types [32]	18
Table 2- 5: represents some of various inverter types manufactured by multinational com-	
Table 2- 6: MMC Manufacturing and applications	21
Table 2- 7: The switching states of MMC	22
Table 3- 1: Switching states of 4-sub-module GMC	40
Table 3- 2: Switching states of 4-sub-module GMC	41
Table 4- 1: The Clarke and Park transformations	43
Table 5- 1: The system parameters	49
Table 5- 2: Parameters systems under study	52
Table 5- 3: Components comparison of GMC and MMC	53

List of Abbreviations

DC: Direct Current

AC: Alternative Current

VSC: Voltage Source Converter

CSC: Current Source Converter

DG: Distributed Generator

HVDC: High Voltage Direct Current

FACTS: Flexible Alternative Current Transmission Systems

NPC-VSC: Neutral Point Clamped Voltage Source Converter

FC-VSC: Flying Capacitor Voltage Source Converter

CHB-VSC: Cascaded H-Bridge Voltage Source Converter

MMC: Modular Multilevel Converter

GMC: Granular Multilevel Converter

KV: Kilo Volt

KA: Kilo Ampere

MW: Mega Watt

IGBT: Insulated Gate Bipolar Transistor

THD_V: Total harmonic distortion for Voltage

HB: Half Bridge

SM: Sub-Module

PI: Proportional Integral

RCC: Ramp Current Control

PCC: Point of Common Coupling

PLL: Phase Locked Loop

List of Symbols

Udc or Vdc: output DC voltage

Ua or Va: AC voltage for phase a

Ub or Vb: AC voltage for phase b

Uc or Vc: AC voltage for phase c

V_C: Capacitor voltage

H: The hysteresis capacitor voltage limit

Vstep: The voltage of the step level at the output of the multilevel converter

Uni: The reference voltage level number

Pref: Reference active power

Pgrid: Active power of the grid

Qref: Reference reactive power

Qgrid: The reactive power of the grid