The Effect of Prone Positioning on the Hemodynamics in Children with Acute Respiratory Distress Syndrome

Thesis

Submitted for partial fulfillment of the MD degree in **Pediatrics**

By

Nehad Ahmed Bakry Mohamed

M.B., B.Ch. (2009). M.Sc. (2014) Faculty of Medicine - Ain Shams University

Under supervision of

Prof. Tarek Ahmed Abdelgawad

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Prof. Mervat Gamal Eldin Mansour

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Prof. Waleed Mohamed Elguindy

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Ahmad Mostafa Allam

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Dr. Eman Mohamed Elsayed

Lecturer of Pediatrics
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2019

تأثير وضعية الإستلقاء علي البطن على ديناميكا الدم في الأطفال الذين يعانون من متلازمة الضائقة الدم في الأطفال التنفسية الحادة

رسالة توطئة للحصول على درجة الدكتوراه في طب الأطفال

مقدمة من الطبيبة/نهاد أحمد بكري محمد الطبيبة/نهاد أحمد بكري محمد ماجستير طب الأطفال، (٢٠١٤) – جامعة عين شمس

تحت إشراف

الأستاذ الدكتور/طارق أحمد عبدالجواد أستاذ طب الأطفال كلية الطب علية الطب عن شمس

الأستاذ الدكتور/مرفت جمال الدين منصور أستاذ طب الأطفال كليةالطب جامعة عين شمس

الأستاذ الدكتور/وليد محمد الجندي أستاذ طب الأطفال كلية الطب – جامعة عين شمس

الدكتور/ أحمد مصطفي علام مدرس طب الأطفال كلية الطب- جامعة عين شمس

الدكتور/ ايمان محمد السيد مدرس طب الأطفال كلية طب- جامعة عين شمس

> كلية الطب جامعة عين شمس ٢٠١٩

Acknowledgement

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Tarek Ahmed Abdelgawad**, Professor of Pediatrics, Faculty of Medicine
- Ain Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Prof. Mervat GamalEldin Mansour**, Professor of Pediatrics, Faculty of Medicine - Ain Shams University for adding a lot to this work by her experience and for her keen supervision.

I am also thankful to **Prof. Waleed Mohamed Elguindy**, Professor of Pediatrics, Faculty of Medicine - Ain Shams University for his valuable supervision, co-operation and direction that extended throughout this work.

I would like to direct my special thanks to **Dr. Ahmad**Mostafa Allam, Lecturer of Pediatrics, Faculty of Medicine Ain Shams University, for his invaluable help, fruitful advice,
continuous support offered to me and guidance step by step till
this essay finished.

I cannot forget the great help of **Dr. Eman Mohamed Elsayed**, Lecturer of Pediatrics, Faculty of Medicine - Ain Shams University for her invaluable efforts, tireless guidance and for her patience and support to get this work into light.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Nehad Ahmed Bakry Mohamed

List of Contents

	Page
Acknowledgment List of Abbreviations List of Figures List of Tables	i ii iv
Introduction	1
Aim of The Study	5
Review of Literature	6
Chapter 1: Acute respiratory distress syndrome	6
Chapter 2: Prone positioning in ARDS	33
Chapter 3: Non-invasive hemodynamic monitoring of critically ill patients	43
Patients and Methods	61
Results	77
Discussion	114
Summary	126
Conclusion	130
Recommendations	131
References	132
Arabic Summary	-

ABSTRACT

Background: Prone positioning (PP) has been used for many years in patients with acute respiratory distress syndrome (ARDS). The initial reason for prone positioning in ARDS patients was improvement in oxygenation. Hemodynamic response to PP has never been studied in a large series of patients with ARDS.

Aim of the study: to determine the effects of prone positioning (PP) on the hemodynamics in children with Acute Respiratory Distress Syndrome (ARDS).

Patients and methods: This is a prospective observational study which was conducted on 50 patients their age ranged 2-48 months admitted to the Pediatric Intensive Care Units (PICUs) of Ain Shams University Hospitals with ARDS. Prone positioning was applied to mechanically ventilated patients with ARDS fulfilling Pediatric Acute Lung Injury Consensus conference 2015(PALICC). The patients were subjected to measuring hemodynamic parameters (cardiac index, systemic vascular resistance index, ejection fraction, pulmonary pressure, IVC distensibility index) and respiratory mechanics (mean airway pressure, respiratory rate, PEEP, tidal volume, compliance, delta P and frequency) and calculating oxygenation indices (oxygenation index, oxygen saturation index) in supine then after 2,6,12and 16hrs prone positioning.

Results: Hemodynamic study revealed a significant increase in pulmonary pressure $(21.2\pm9.4\text{mmHg})$ in supine and $(23.3\pm9.5\text{mmHg})$ in prone position after 16hrs. There was a significant increase in IVC distensibility index (19.2 ± 16.4) in supine and (27.4 ± 20.3) after 16hrs prone position which indicated fluid resuscitation at that time. Oxygenation indices revealed oxygenation improvement by prone position. There was a significant decrease in FIO2 in supine $(62.8\pm13.1\%)$ and $(53.9\pm14.5\%)$ after 16hrs prone position. A significant improvement in oxygenation index (15.1 ± 8.9) in supine versus (9.4 ± 7.3) after 16hrs prone position was elicited.

Conclusion: In this study, prone position showed oxygenation improvement in children with ARDS. Prone position can be applied safely for extended periods up to (16 hours) with close hemodynamic monitoring.

Key Words: acute respiratory distress syndrome, prone position, hemodynamic monitoring.

List of Abbreviations

ABG : Arterial blood gases

AECC : American-European Consensus Conference

AKI : Acute kidney injury

AKIN : Acute kidney injury network

ALI : Acute lung injury

ARDS : Acute respiratory distress syndrome

AV : Aortic valveBP : Blood pressureBSA : Body surface area

CBC : Complete blood count

CI : Cardiac index CO : Cardiac output

CPAP : Continuous positive airway pressure

CPR : Cardiopulmonary resuscitation

 $\begin{array}{lll} \text{CRT} & : & \text{Capillary refilling time} \\ \text{CSA} & : & \text{Cross-sectional area} \\ \text{C}_{\text{stat}} & : & \text{Static compliance} \end{array}$

CT : Computed tomography

CV : Central vein

CVP : Central venous pressure

CW : Colour waveCXR : Chest X-ray

D max : Maximum diameter
D min : Minimum diameter

DIVC : Inferior vena cava distensibility index

ECG : Electrocardiography
Echo : Echocardiography

ECMO : Extracorporeal membrane oxygenation

EF : Ejection fraction

ETT : Endotracheal tube

FIO2 : Fractionated inspired oxygen

FS : Fraction shortening GCS : Glasgow coma scale

Hb : Hemoglobin

HFOV : High frequency oscillatory ventilation

HR : Heart rate

Hrs : Hours

IAP : Intra-abdominal pressure

ICP : Intracranial pressureICU : Intensive care unit

IL-1 : Interlukin 1IL-6 : Interlukin 6IL-8 : Interlukin 8

iNO : Inhaled nitric oxideIVC : Inferior vena cavaIVP : Intravesical pressure

KDIGO: Kidney disease improving global outcome

LOS : Length of stay
LV : Left ventricle
LV : Left ventricle
LV : Left ventricle

LVEDD: Left ventricular end diastolic diameter LVESD: Left ventricular end systolic diameter

LVO : Left ventricular output

LVOT : Left ventricular outflow tract

MAP : Mean airway pressure

Max : Maximum

MV : Mechanical ventilationNMB : Neuromuscular blocker

NS : Non significant

O2 : Oxygen

OI : Oxygenation index

OSI : Oxygen saturation index

P/F : PaO2/Fio2

P+ : Pulmonary pressure

PALICC: Pediatric acute lung injury consensus conference

PaO2 : Arterial partial pressure of oxygen

PAP : Pulmonary artery pressure

PARDS: Pediatric Acute Respiratory Distress Syndrome.

Paw : Airway pressure

PEEP : Positive end expiratory pressure

PICU : Pediatric intensive care unit

PLAX : Parasternal long axis

PLT : Platelet

PP : Prone position
P_{PLAT} : Plateau pressure

PSAX : Parasternal short axis

PVR : Pulmonary vascular resistance

PW: Pulse wave RA: Right atrium

RAP : Right atrial pressure

RCT : Randomized controlled trial

RIFLE: Risk, Injury, Failure, Loss of function, End stage

kidney stage

RR : Respiratory rateRV : Right ventricleRV : Right ventricle

RVO : Right ventricular output

S/F : SPO2/Fio2 S : Significant

ScVO2 : Central venous oxygen saturation

SD : Standard deviation

Sig. : Significance

SIMV : Synchronized intermittent mandatory ventilation

SOFA : Sequential organ function assessment

SPO2 : Oxygen saturation

SPSS : Statistical package for social science

SV : Stroke volume

SVC : Superior vena cava

SVO2 : Mixed venous oxygen saturationSVRI : Systemic vascular resistance index

TLC : Total leucocytic countTNF : Tumor necrosis factor

TR : Tricuspid regurge

TRALI: Transfusion related acute lung injury

TV : Tidal volume

VILI : Ventilator induced lung injuryVIS : Vasoactive inotropic score

VTI : Velocity time integralV/Q : Ventilation/perfusion

List of Figures

Fig.	Title	Page
1	Chest x ray of patient with ARDS.	14
2	Chest ultrasound showing various stages of	15
	increasing severity in alveolar-interstitial	
	syndrome.	
3	Chest ultrasound of a case with ARDS.	16
4	CT chest with typical features of ARDS.	18
5	CT chest for evaluation of ARDS.	19
6	Comparison of diagrammatic lung in supine and	35
	prone position.	
7	Pulmonary perfusion in supine and prone	36
	position.	
8	Placing a patient in prone position.	41
9	CT chest of a patient with ARDS in supine and	42
	prone position.	
10	CVP measurement.	51
11	Inferior vena cava (IVC) changes during the	54
	respiratory and cardiac cycles	
12	Assessment of left ventricular output on	56
	echocardiography.	
13	Electrical cardiometry.	57
14	Left ventricular study in PLAX and PSAX.	59
15	Measuring CVP.	64
16	Measuring intra-abdominal pressure indirectly by	65
	measuring IVP.	
17	Hamilton C1 ventilator.	68
18	SLE 5000 high frequency oscillation ventilator.	69
19	Applying patient with ARDS in prone position.	71
20	Samsung HM70A Ultrasound System.	73
21	Ejection fraction(EF) Using single measurements	73
	of the LV cavity in the mid-ventricle in both end-	
	diastole and end-systole in (PLAX view) using	
	M-mode.	

Fig.	Title	Page
22	The IVC was examined sub-costally in longitudinal section.	73
23		77
	Sex distribution among the studied group.	78
24 25	Etiology of ARDS.	79
26	Subdivision of the studied group. Comparison of wital data in suping and property.	87
20	Comparison of vital data in supine and prone position (PP) 2,6,12 and 16hrs	87
27	Comparison of Systemic vascular resistance index (SVRI) and cardiac output(COP)in supine and during prone position.	88
28	Comparison of hemodynamic parameters in supine and during PP.	89
29	Comparison of significant vital data and hemodynamic parameters in supine and during PP.	95
30	Comparison of significant oxygenation indices and respiratory mechanics in supine and during PP.	98
31	Success and failure group.	103
32	Failure criteria.	105
33	Significant ABG and oxygenation indices between success and failure group.	108
34	Significant mechanical ventilation parameters between success and failure group.	109
35	Complications during prone position.	110
36	Patients' Co-morbidity.	110
37	Fate and Mortality among the studied group.	111
38	Prevalent organisms in blood and sputum cultures of the studied patients	112

List of Tables

Table	Title	Page
1	Oxygenation index and outcome.	9
2	Interpretation of oxygen saturation index and	9
	oxygenation index.	
3	Definition of Pediatric ARDS.	10
4	Current evidence and recommendations for	30
	Pediatric respiratory distress syndrome	
	therapies.	
5	Diagnostic criteria and main difference	46
	between RIFLE, AKIN and KDIGO systems.	
6	The pediatric Glasgow coma scale.	47
7	Clinical correlation of SVO2.	50
8	The severity of the hypoxemia defines the	62
	severity of the ARDS	
9	Pediatric SOFA score.	66
10	Interpretation of SOFA score.	67
11	48hrs SOFA score trend.	67
12	Gender distribution among the studied group.	77
13	Demographic data of the studied population.	78
14	Degree and causes of ARDS and incidence of	78
	septic shock in the studied population.	
15	Vital parameters of the studied group were	79
	done initially in supine position.	
16	Mechanical ventilation parameters among	80
	patients initially in supine position.	
17	Initial ABG parameters and Oxygenation	80
	indices.	
18	Hemodynamic parameters initially in supine	81
	position.	
19	Vital data and hemodynamic parameters after	81
	2hrs prone position.	
20	Vital data and hemodynamic parameters in	82
	prone position 6hrs.	

Table	Title	Page
21	Vital data and hemodynamic parameters in prone position 12hrs.	82
22	Vital data and hemodynamic parameters in prone position 16 hrs.	83
23	Mechanical ventilation, ABG parameters and oxygenation indices after 2hrs prone position.	84
24	Mechanical ventilation, ABG parameters and oxygenation indices after 6hrs prone position.	85
25	Mechanical ventilation, ABG parameters and oxygenation indices dafter 12hrs prone position.	85
26	Mechanical ventilation, ABG parameters and oxygenation indices after 16hrs prone position.	86
27	Vital data in supine and prone position 2, 6, 12 and 16hrs.	87
28	Hemodynamic parameters in supine and during prone position.	88
29	Comparison among significant vital and hemodynamic parameters in supine and 2hrs prone position.	90
30	Comparison among significant vital and hemodynamic parameters in supine and 6hrs prone position.	90
31	Comparison among significant vital and hemodynamic parameters in supine and 12hrs prone position.	91
32	Comparison among significant vital and hemodynamic parameters in supine and 16hrs prone position.	91
33	Comparison among significant vital and hemodynamic parameters in 2hrs and 6hrs prone position.	92

Table	Title	Page
34	Comparison among significant vital and	92
	hemodynamic parameters in 2hrs and 12hrs	
	prone position.	
35	Comparison among significant vital and	93
	hemodynamic parameters in 2hrs and 16hrs	
26	prone position.	02
36	Comparison among significant vital and	93
	hemodynamic parameters in 6hrs and 12hrs prone position.	
37	Comparison among significant vital and	94
37	hemodynamic parameters in 6hrs and 16hrs	74
	prone position.	
38	Comparison among significant vital and	94
	hemodynamic parameters in 12hrs and 16hrs	
	prone position.	
39	Mechanical ventilation parameters in supine	96
	and during prone position.	
40	ABG parameters and oxygenation indices in	97
	supine and during prone position.	0.0
41	Comparison among significant respiratory	98
	mechanics and oxygenation parameters in	
42	supine and 2hrs prone position. Comparison among significant respiratory	99
42	mechanics and oxygenation parameters in	77
	supine and 6hrs prone position.	
43	Comparison among significant respiratory	99
	mechanics and oxygenation parameters in	-
	supine and 12hrs prone position.	
44	Comparison among significant respiratory	100
	mechanics and oxygenation parameters in	
	supine and 16hrs prone position.	
45	Comparison among significant respiratory	100
	mechanics and oxygenation parameters in	
	2hrs & 6hrs prone position.	

Table	Title	Page
46	Comparison among significant respiratory	101
	mechanics and oxygenation parameters in	
	2hrs & 12hrs prone position.	101
47	Comparison among significant respiratory	101
	mechanics and oxygenation parameters in	
40	2hrs & 16hrs prone position.	102
48	Comparison among significant respiratory	102
	mechanics and oxygenation parameters in	
49	6hrs & 12hrs prone position. Comparison among significant respiratory	102
49	mechanics and oxygenation parameters in	102
	6hrs & 16hrs prone position.	
50	Comparison among significant respiratory	103
50	mechanics and oxygenation parameters in	105
	12hrs & 16hrs prone position.	
51	Comparison between success and failure	104
	group as regard demographic data.	
52	Comparison between success and failure	104
	group as causes of ARDS and comorbidities.	
53	Initial severity of illness (SOFA score) and	106
	laboratory findings.	
54	Comparison among initial vital data between	106
	success and failure group.	
55	Comparison among initial hemodynamic	107
	parameters between success and failure group	10-
56	Initial ABG and oxygenation indices in	107
	success and failure group.	100
57	Initial respiratory parameters between success	108
50	and failure group. Complications during Prone position	100
58 50		109 111
59 60	Patients' fate and mortality. Length of stay (LOS) in PICU.	111
UU	Lengui of Stay (LOS) in FICO.	111