Anti Glutamic Acid Decarboxylase 65 in Type 2 Diabetes Mellitus

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

Ibrahim Salama Ibrahim Ali

M.B.B.Ch, Faculty of Medicine, AL-Azhar University

Supervised by

Prof. Dr. Mohammed Saad Hamed

Professor and Head of Department of Internal Medicine Faculty of Medicine, Ain-Shams University

Dr. Ahmed Mohamed Bahaa El-Din

Assistant Professor of Internal Medicine Faculty of Medicine, Ain-shams University

Dr. Bassem Murad Mostafa

Lecturer of Internal Medicine Faculty of Medicine, Ain-Shams University

> Faculty of Medicine Ain-Shams University

> > 2019

Acknowledgments

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I had great honor that my work under the supervision of **Prof**/ **Mohammed SaadHamed.** I would like to express my profound gratitude and sincere appreciation for his kind supervision, continuous encouragement and unlimited support in every step throughout this work.

I would like also to thank **Dr/Ahmed Mohamed Bahaa El-Din**, for his valuable advice and encouragement throughout this work.

I would like to express my deepest thanks and sincere appreciation to **Dr/Bassem Murad Mostafa**, for his continuous support, great encouragement, great help, his patience and valuable advisement in every step throughout this work.

Last but not the least, I would like to express all my feelings of love and appreciation to all my senior staff and my colleagues in internal medicine department for their lovely help throughout this work.

🔼 Ibrahim Salama Ibrahim Ali

List of Contents

Subject	Page No.
List of Abbre	eviationsi
List of Tables	siv
List of Figure	esvi
Introduction	1
Aim of the W	ork3
Chapter I:	Type 2 Diabetes Mellitus (T2DM) 4
Chapter II:	Glutamic Acid Decarboxylase (GAD) 22
Chapter III:	Autoimmune Aspects of Type 2 Diabetes Mellitus and Role of GAD65 Antibodies 40
Patients and	Methods 57
Results	62
Discussion	81
Conclusion	88
Recommenda	ations and Limitations89
Summary	90
References	93
Arabic Sumn	nary—

List of Abbreviations

Abbr.	Full-term	
Ab+	Antibody positive	
ACE	Angiotensin converting enzyme	
ACR	Albumin:creatinine ratio	
ADA	American Diabetes Association	
AER	Albumin excretion rate	
AGREE	Appraisal of Guidelines for Research and	
	Evaluation	
BDR	Background diabetic retinopathy	
BFST	Behavioural family systems therapy	
BMI	Body mass index	
BMI-SDS	Body mass index – standard deviation score	
BSPED	British Society for Paediatric Endocrinology and	
	Diabetes	
CASCADE	Child and Adult Structured Competencies	
	Approach to Diabetes Education	
CBT	Cognitive behavioural therapy	
CGMS	Continuous glucose monitoring system	
CHF	Chronic heart failure	
CI	Confidence interval	
CO2	Carbon dioxide	
CSII	Continuous subcutaneous insulin infusion	
CST	Coping Skills Training	
CVD	Cardiovascular disease	
DCCT	Diabetes Control and Complications Trial	
DKA	Diabetic ketoacidosis	
DQOLY-	Diabetes Quality of Life for Youth – Short Form	
SF		
ECG	Electrocardiogram	
ECMO	Extracorporeal membrane oxygenation	
EDIC	Epidemiology of Diabetes Interventions and	
	Complications	
EED	Economic Evaluation Database	

eGFR Epidermal growth factor receptor

ESRD End-stage renal disease
FPG Fasting plasma glucose
GABA gamma-Aminobutyric acid

GAD Anti-glutamic acid decarboxylase

GAD65, Glutamic acid decarboxylase autoantibody 65

GAD65+ (positive)

GADA Anti-glutamic acid decarboxylase antibody

GP General practitioner

GRADE Grading of Recommendations Assessment,

Development and Evaluation

GRP Guideline review panel

HAEM Haemoglobin

HbA1c Glycatedhaemoglobin **HDL** High-density lipoprotein

HR Hazard ratio

HTA Health Technology Assessment

IAA Insulin autoantibody

IA-2 Insulinoma-associated autoantibody

IA-2A+ Insulinoma-associated autoantibody-positive IA-2β-A Insulinoma-associated beta autoantibody

ICA Islet-cell antibodies

ICA512 Anti-islet cell antibody 512

ICER Incremental cost effectiveness ratio

ICU Intensive care unit

IFCC International Federation of Clinical Chemistry IGRP Islet-specific glucose-6-phosphatase catalytic

subunit

IQR Interquartile range

ISPAD International Society for Pedatric and Adolescent

Diabetes

ITU Intensive care unit

KICk-OFF Kids In Control OF Food

LADA Latent autoimmune diabetes of adulthood

LDL Low-density lipoprotein LVH Left ventricular hypertrophy

MA Microalbuminuria

MCMC Markov chain Monte Carlo

MD Mean difference

MDI Multiple daily injection
ME Macular oedema (edema)

MI Myocardial infarction; Multiple injections (see

context)

MID Minimally important difference

MIMS Monthly Index of Medical Specialities

MMTT Mixed meal tolerance test

MODY Maturity onset diabetes of the young

MRI Magnetic resonance imaging

MST Multisystemic therapy

NA Not applicable NC Not calculable

NCC National Collaborating Centre

NCC-WCH National Collaborating Centre for Women's and

Children's Health

NCGC National Clinical Guideline Centre

NHS National Health Service

NICE National Institute for Health and Care Excellence

NPH neutral protamine Hagedorn NPSA National Patient Safety Agency

OR Odds ratio

PDR Proliferative diabetic retinopathy
PDSN Paediatric diabetes specialist nurse

PedsQL Paediatric quality of life

PSA Probabilistic sensitivity analysisPVD Peripheral vascular diseaseOALY Quality adjusted life years

QUADAS Quality Assessment of Studies of Diagnostic

Accuracy

RCT Randomised controlled trials

RR Relative risk

SBP Systolic blood pressure SD Standard deviation

SDS Standard deviation score

SMBG Self-monitoring of blood glucose SMD Standardised mean difference

SVL Severe visual loss
T1D Type 1 diabetes
T2D Type 2 diabetes
TRIG Triglycerides

UCPCR Urine C-peptide:creatinine ratio
UKPDS UK Prospective Diabetes Study
Various through combalisms

VTE Venous thromboembolism

WBC White blood cells

List of Tables

Table N	o. Title	Page No.
Table 1:	Diagnostic reference values	5
Table 2:	Risk factors for T2DM	9
Table 3:	The baseline demographic characteristhe OAD group	
Table 4:	The DM characteristics of the OAD g	roup 64
Table 5:	Vital sings of the OAD group	65
Table 6:	Blood glucose test of the OAD group.	65
Table 7:	Laboratory findings of the OAD group	p66
Table 8:	The baseline demographic characteristhe Insulin group	
Table 9:	The DM characteristics of the Insulin	group 68
Table 10:	Vital sings of the Insulin group	69
Table 11:	Blood glucose test of the Insulin group	p 69
Table 12:	Laboratory findings of the OAD group	p70
Table 13:	Comparison between both groups in a Anti-GAD 65	•
Table 14:	Correlations between the ANTI GAI all patients included in the study to parameters (n=100)	o other
Table 15:	Correlations between the ANTI GAI OAD group to other parameters (n=50	
Table 16:	Correlations between the ANTI GAI insulin group to other parameters (n=5	

		•	- 1	
ı	ıct	\cap t	Tab	ıΙΔC

Table 17:	Comparison of Studied groups in terms of baseline characteristics	. 75
Table 18:	Comparison of Studied groups in terms of DM characteristics	. 76

List of Figures

Figure No.	Title	Page No.
Figure 1:	The 'ominous octet' of hypergly in T2DM	•
Figure 2:	Mechanisms of insulin resistance.	19
Figure 3:	Schematic representation of the shunt	
Figure 4:	Cycle of inactivation and reactiv glutamate decarboxylase	
Figure 5:	Immunocytochemical visualizat GABA in cortical neurons in cell	
Figure 6:	Islet cell autoimmunity in T2DM.	48
Figure 7:	Association between ANTI GAD Type of treatment	

Introduction

Diabetes mellitus is a complex, chronic illness requiring continuous medical care with Multi factorial risk-reduction strategies beyond glycemic control. Ongoing patient self-management education and support are critical to prevent acute complications and reduce the risk of long-term complications. Significant evidence exists that supports a range of interventions to improve diabetes outcomes (William, 2017).

For type 2 diabetes, there are few usual highly specific indicators, though the presence of risk factors such as obesity indicates the likelihood of developing type 2 diabetes. Hopefully, future research will reveal some specific markers of the type 2 diabetic disease process (**Kadiyala et al., 2010**).

For the most part, in type 2 diabetic patients, positivity for Glutamic acid decaboxylase autoantibodies, as well as autoantibodies to other islet cell antigens, correlates with some of the phenotypic features consistent with those of type 1 diabetes, such as younger age at diagnosis, lower body mass index (BMI), and a loss of B-cell function. This form of disease with initial type 2-like diabetes presentation and with serological evidence of islet cell autoimmunity has been termed latent autoimmune diabetes, or type 1.5 diabetes, and has been associated with progressive decline in B-cell

~~·	_	
	Introdi	iction

function and future insulin requirement in some population (Barinas-Mitchell et al., 2004).

However, no study to date has assessed the progression to insulin deficiency in Glutamic acid decarboxylase antibody-positive Egyptian patients with Type 2 diabetes. This study will assess the rate of progression to insulin deficiency in Glutamic acid decarboxylase antibody positive patients with Type 2 diabetes.

Aim of the Work

This study aim to assess anti glutamic acid decarboxylase 65 levels in type 2 Egyptian diabetic patients. And if it could be used as a marker for progression to insulin deficiency and treatment with insulin.