L-Carnitine and Clomiphene Citrate for induction of ovulation in women with Polycystic Ovary Syndrome: Randomized controlled trial

Ehesis

Submitted for Partial Fulfillment of Master Degree in Obstetrics and Gynecology

By

Hassan Bahaa Abd El-Kader Fateen

M.B.B.Ch., (2014)
Misr University for Science and Technology

Supervisors

Prof. Mohamed Ashraf Mohamed Farouk Kortam

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Rehab Mohamed Abd El-Rahman

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2019

I wish to express my deepest gratitude and appreciation to **Prof.**Mohamed Ashraf Mohamed Farouk Kortam, Professor of Obstetrics and Gynecology, Faculty of Medicine- Ain Shams University, for his patience, encouragement, valuable instructions and generous help.

I would like to express my most sincere gratitude to **Dr. Rehab**Mohamed Abd El-Rahman, Lecturer of Obstetrics and Gynecology, Faculty

of Medicine- Ain Shams University, for her meticulous guidance and deep

involvement in every detail concerning the practical aspects of the study.

Finally I would like to thank all of the women who agreed to join the study and I wish them the best of luck in their lives.

A. Hassan Fateen

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	V
• Introduction	1
Aim of the Work	4
Review of literature	
Chapter (1): Polycystic Ovary Syndrome	5
Chapter (2): Clomiphene Citrate	21
Chapter (3): Carnitine	33
Materials and Methods	49
• Results	59
Discussion	70
Summary	78
• Conclusion	82
Recommendations	83
References	84
Arabic Summary	

List of Abbreviations

Abb.	Full term
17-OH-progesterone	17-hydroxyprogesterone
ACS	Acyl-CoA synthases
ADMA	Asymmetric dimethylarginine
BMI	Body mass index
CACT	Carnitine acyl carnitine translocase
СС	Clomiphene citrate
CoA	Coenzyme A
COX	Cyclooxigenase
CPT-1	Carnitine palmitoyl transferase-1
CPT-2	Carnitine palmitoyl transferase-2
ER	Endoplasmic reticulum
FA	Fatty acid
FABPpm	Plasma membrane fatty acid binding
	proteins
FAT/CD36	Fatty acid translocase
FATP	Fatty acid transport proteins
FET	Fetal Embryo transfer
FFA	Free fatty acids
FSH	Follicle stimulating hormone
GnRH	Gonadotropin releasing hormone
GPx	Glutathione peroxidase
GRd	Glutathione reductase
GSH	Reducted glutathione
GSSG	Oxidized glutathione

Tist of Abbreviations

Abb.	Full term
H ₂ O ₂	Hydrogen peroxide
НСҮ	Homocysteine
HSG	Hysterosalpingography
ICSI	Intra-Cytoplasmic Sperm Injection
IFN	Interferon
IL	Interleukin
IMM	Inner mitochondrial membrane
IR	Insulin resistance
IVF	In-vitro fertilization
LC	L-carnitine
LDL	Low-density lipoprotein
LH	Luteinizing hormone
mPTP	Mitochondrial permeability transition
1111 11	pore
NO	Nitric oxide
NOS	Nitric oxide synthase
02-	Superoxide anion
OCTN2	Organic cation transporter novel 2
ОН	Hydroxyl radical
ОМ	Oocyte membrane
OMM	Outer mitochondrial membrane
ON00-	Peroxynitrite
OS	Oxidative stress
oxLDL	Oxidized low-density lipoprotein
PCOS	Polycystic ovary syndrome
PON-1	Paraoxonase 1

Tist of Abbreviations

Abb.	Full term
PRL	Prolactin
ROS	Reactive oxygen species
SHBG	Sex hormone-binding globulin
SOD	Superoxide dismutase
Т	Translocase
T2DM	Type 2 diabetes mellitus
TC	Total cholesterol
TNF	Tumor necrosis factor
Trigs	Triglycerides
WC	Waist circumference

List of Tables

No	Table	Page
Table.1	Guidelines for the diagnosis of PCOS	7
Table.2	Intermediate and long-term health	20
	consequences of PCOS	
Table.3	Adverse effects of clomiphene citrate	27
Table.4	Methods for ovulation induction in PCOS	31
Table.4	women	
Table.5	Treatment strategies for ovulation induction	32
Table.5	in PCOS women	
Table.6	Selected Food Sources of Carnitine	36
Table.7	Signs and symptoms in women with PCOS	50
Table.8	WHO Semen analysis lower reference limits	53
Table.9	Baseline characteristics in both study groups	60
Table.10	Basal hormonal work-up in both study groups	60
Table.11	Details of induction of ovulation in both study	61
Table.11	groups	
Table.12	Main outcome measures in both study groups	64
Table.13	Risk analysis for failed ovulation	67
Table.14	Risk analysis for failed pregnancy	68
Table.15	Incidence of Side effects in both study groups	69

List of Figures

No	Figure	Page
Figure.1	The prevalence rates of clinical symptoms in	
	women with PCOS	6
Figure.2	The main pathogenic factors in PCOS	8
Figure.3	The role of insulin resistance in PCOS	12
Figure.4	Steroid hormone biosynthetic pathways in	16
	ovary	
Figure.5	The hypothalamicpituitary-gonadal axis in	17
	PCOS	
Figure.6	Important biochemical pathways involved in	19
	the pathophysiology of PCOS	
Figure.7	Schematic representation of mechanisms and	19
	pathways that may contribute to oxidative	
	stress in PCOS	
Figure.8	Isomeric forms of clomiphene citrate	22
Figure.9	Mechanism of action of clomiphene citrate	23
Figure.10	Dosing of clomiphene citrate	25
Figure.11	Molecular structures of L-carnitine and	33
	acetyl-L-carnitine	
Figure.12	Carnitine biosynthesis in humans	34
Figure.13	Systemic and reproductive functions of L-	43
	carnitine	
Figure.14	Mechanism of L-carnitine action on female	45
	fertility	
Figure.15	The carnitine cycle in fatty acid oxidation	46
Figure.16	The classic "string of pearls" appearance of a	50
	polycystic ovary	

List of Figures

No	Figure	Page
Figure.17	Flow diagram of the study	59
Figure.18	Mean number of days needed until hCG	62
	injection in both study groups.	
Figure.19	Mean endometrial thickness in both study	62
	groups	
Figure.20	Mean number of pre-ovulatory follicles ≥ 17	63
	mm in both study groups.	
Figure.21	Ovulation rate in both study groups.	65
Figure.22	Pregnancy rate in both study groups.	66

L-Carnitine and Clomiphene Citrate for induction of ovulation in women with Polycystic Ovary Syndrome: Randomized controlled trial

Abstract

<u>Objective</u>: The aim of the study was to assess the efficacy of adding L-carnitine to clomiphene citrate for increasing the ovulation and the pregnancy rate in women with PCOS. The primary outcome was the ovulation rate and the secondary outcome was the pregnancy rate.

Materials and Methods: This study was a randomized controlled clinical trial that was conducted on 94 women who attended at the Obstetrics & Gynecology Outpatient Infertility Clinic at Ain Shams University Maternity Hospital, and they were diagnosed with PCOS according to the Rotterdam Criteria (11). The women were distributed randomly into two equal groups; Group L (n=47) received 100 mg of clomiphene citrate plus 3 gm of L-carnitine orally from day 3 to day 7 of the cycle with continuation of L-carnitine till the day of pregnancy test and Group C (n=47) received 100 mg of clomiphene citrate orally from day 3 to day 7 of the cycle.

Results: There was a significant difference (P<0.05) between the two groups regarding the ovulation rate (Group L: 70.2%; Group C: 44.7%). There was no significant difference (P>0.05) between the two groups regarding the pregnancy rate (Group L: 8.5%; Group C: 6.4%). There was a highly significant difference (P<0.01) between the two groups as regards to; the number of mature follicles (Group L: 1.6 ± 1.2 ; Group C: 0.8 ± 0.7), the days needed till hCG injection (Group L: 12.2 ± 1.5 ; Group C: 14.0 ± 1.8), the Endometrial thickness (Group L: 10.4 ± 1.2 mm; Group C: 9.1 ± 0.8 mm). There was no significant difference (P>0.05) between the two groups regarding the level of progesterone after 8 days from the hCG injection.

<u>Conclusion</u>: L-carnitine added to clomiphene citrate for induction of ovulation in PCOS women had a significant effect on the ovulation rate, but it didn't have a significant effect on the pregnancy rate when compared to clomiphene citrate alone.

Keywords: Polycystic ovary syndrome, Induction of ovulation, L-Carnitine, Clomiphene citrate.

PROTOCOL OF A THESIS FOR PARTIAL FULFILMENT OF MASTER DEGREE IN OBSTETRICS AND GYNECOLOGY

Title of the protocol:

L-Carnitine and Clomiphene Citrate for induction of ovulation in women with Polycystic Ovary Syndrome: Randomized controlled trial.

Postgraduate Student: Hassan Bahaa Abd EL-Kader Ahmed Fateen

Degree: M.B.B.Ch., - Misr University for Science and Technology

DIRECTOR: Prof. Dr. Mohamed Ashraf Mohamed Farouk Kortam

Academic Position: *Professor of Obstetrics and Gynecology*

Department: Faculty of Medicine - Ain Shams University

<u>Co-DIRECTOR</u>: Dr. Rehab Mohamed Abd EL-Rahman

<u>Academic Position:</u> Lecturer of Obstetrics and Gynecology

<u>Department</u>: Faculty of Medicine - Ain Shams University

What is already known on this subject? AND What does this study add?

Polycystic ovary syndrome (PCOS) is one of the most common <u>endocrine disorder</u>s and the leading cause of infertility in women of reproductive age, it is characterized by hyperandrogenism, ovulatory dysfunction and polycystic ovarian morphology.

This study will help to add more proof that L-carnitine supplementation has positive effects on PCOS patients as shown by previous studies.

Also, this study will add positive value to PCOS patients' lives because it will increase their chance of becoming pregnant without doing operations on their ovaries.

1. INTRODUCTION/REVIEW

Insulin resistance with compensatory hyperinsulinemia appears to be the most universal feature of the polycystic ovarian disease and has a pathophysiologic role in the hyperandrogenism of the disorder (Samsami et al., 2014).

In most cases ovulation can be induced with clomiphene citrate which constitutes one of the first-line treatments for ovulation induction in PCOS patients, as it is economical, has few adverse effects, and requires little monitoring (Elsamy and Saleh, 2015).

A lot of investigations have revealed that oxidative stress level is significantly increased in patients with PCOS compared with the normal (Zuo et al., 2016).

Oxidative stress is defined as an imbalance derived from excessive formation of oxidants in the presence of limited antioxidant defenses (Murri et al., 2013).

L-Carnitine is a ubiquitous molecule derived from the amino acids lysine and methionine (Maldonado et al., 2016).

A study by Celik et al., in 2017 showed that the women with PCOS had significantly lower L-carnitine levels than those of the healthy controls (Celik et al., 2017).

Carnitine plays a substantial role in weight loss, glucose tolerance, insulin function and fatty acid metabolism (Samimi et al., 2016).

A study by <u>Jamilian</u> et al., in 2017 concluded that carnitine supplementation among patients with PCOS had favorable effects on the biomarkers of oxidative stress (**Jamilian et al.**, 2017).

In addition to a study by Ismail et al., in 2014 where they combined L-carnitine and clomiphene citrate and this significantly improved both ovulation and cumulative pregnancy rates in patients with clomiphene-resistant PCOS (Ismail et al., 2014).

2. AIM/OBJECTIVES

Research hypothesis:

In women with PCOS adding L-carnitine to clomiphene citrate may improve the ovulation process and the pregnancy rate.

Research question:

In women with PCOS does adding L-carnitine to clomiphene citrate improve the ovulation process and the pregnancy rate?

Aim of the study:

This study aims to assess the efficacy of adding L-carnitine to clomiphene citrate for increasing the ovulation and the pregnancy rate in women with PCOS.

Outcome:

- . The main outcome is the success of the ovulation process.
- . The Secondary outcome is the pregnancy rate.

3. METHODOLOGY

Type of the Study:

A Randomized controlled clinical trial.

Study Setting and population:

Women attending at the Obstetrics & Gynecology outpatient infertility clinic in Ain shams university hospital, Cairo, Egypt.

Sample size calculation:

The required sample size has been calculated using the IBM© Samplepower© version 3.3 (IBM© Corp.,Armonk,NY,USA).

The main outcome measures are the ovulation rate and cumulative pregnancy rate. A previous study reported that the ovulation and cumulative pregnancy rates were 64.4% versus 17.4% and 51.5% versus 5.8% in PCO patients receiving L-carnitine with clomiphene citrate or clomiphene citrate alone, respectively (Ismail et al., 2014),

So it is estimated that a sample size of 47 patients in either study group achieves a power of 99% to detect a difference of 47% (64.4% versus 17.4%) between the 2 groups as regards the ovulation rate, and a power of 99.6% to detect a difference of 45.7% (51.5% versus 5.8%) as regards the cumulative pregnancy rate. These calculations used a two-sided chi-squared test with a type I error of 0.01.

Assuming a drop-out rate of approximately 10%, 53 patients will be recruited in either group (total number = 106 patients).