

Electronics Engineering and Electrical Communications

Supercapacitor for photovoltaic applications

A Thesis submitted in partial fulfilment of the requirements of the degree of

Master of Science In Electrical Engineering
(Electronics Engineering and Electrical Communications)

By

Asmaa Alamin Ahmed Mohammed

Bachelor of Science In Electrical Engineering
(Electronics Engineering and Electrical Communications)
Faculty of Engineering, Benha University, 2013

Supervised By

Prof. Wagdi Anis Prof. Ahmed Attiya

Cairo - (2019)

FACULTY OF ENGINEERING

Electronics and Communications

Supercapacitor for photovoltaic applications

By

Asmaa Alamin Ahmed Mohammed

Master of Science in Electrical Engineering
(Electronics Engineering and Electrical Communications)
Faculty of Engineering, Ain Shams University, 2019

Examiners' Committee

Signature

Date: 07 October 2019

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

	Student name
Asmaa	Alamin Ahmed Mohamed
	Signature

Date: 07 October 2019

Researcher Data

Name : Asmaa Alamin Ahmed Mohammed

Date of birth : 1 October 1991

Place of birth : Cairo

Last academic degree : Bachelor

Field of specialization : Electronics and communication

University issued the degree : Benha

Date of issued degree : 13 July 2013

Current job : Research assistant

Thesis Summary

Supercapacitors are extraordinary types of capacitors which are characterized by much larger electrical capacitance, light weight, flexible possibility and high power density. The associated advantages and importance can be observed when using in power electronic system especially solar cell systems. By combining with batteries. Supercapacitors could reduce the extraction of current in case of dense loads. In order to charge supercapacitor from power source like solar cell and feed a specific load, it would require to use a linear regulator. Despite the advantages and importance of conventional linear regulators, low efficiency of about 40% is one of their main drawbacks. Supercapacitor based low dropout regulator called by (SCALDO), is a linear DC to DC assisted technique that can be used to duplicated efficiency of conventional linear regulator. Therefore, supercapacitor is playing a crucial role to maximize the efficiency as a result of being nearly lossless voltage dropper element, it minimizes the losses in the pass element and power semiconductors. This research presents the mathematical principles of SCALDO and a simple implementation by using simple and costly effective electronic components. The proposed low dropout regulator is used to convert 12V to 5V. The designed high efficiency SCALDO linear regulator is appropriate for solar cell power systems applications.

On the other hand, a full packed supercapacitor was fabricated and studied based on composite nanomaterials. The composite consists of polyaniline and reduced graphene oxide (RGO-PANI) which was synthesized via functionalized ferrite on graphene oxide as corresponding PANI nucleation sites. This procedure dramatically increases the composite specific capacitance and lifetime when compared with crude PANI.

Asymmetric paper-based SCs were fabricated and electrochemically tested by using different electrolytes namely; KOH, H₂SO₄, H₃PO₄ and Na₂SO₄. These electrolytes correspond to strong alkaline, strong acid, weak acid and neutral electrolytes. The impact of various electrolytes was studied intensively by using Bio-Logic ultimate versatile multipotentiostat VSP 300 to perform impedance spectroscopy, Galvanostatic test and cyclic voltammetry as well. The highest achieved specific capacitance was more than 500 F/g of pure electric double layer behavior that is considered to be relatively high values of crude PANI or PANI-graphene composites electric double layer SCs. The composite was described and studied using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and X-ray diffraction.

Keywords:

Supercapacitor, linear regulators, LDO regulator, DC to DC converter, reduced graphene oxide, polyaniline, EDL supercapacitor, nucleation sites.

Acknowledgment

This thesis has been completed at faculty of engineering Ain shams university and nanotechnology lab in electronic research institute with the support of many contributors, to whom I would like to express my sincere thankfulness.

I would like to express my heartfelt gratitude to Prof. Wagdi Anis and Prof. Ahmed Attiya for their supervision, scientific support on this project, patience and admirable will in hard work. A lot of thanks to Physicist Abdelhamid for his great assistance and efforts in my work. Besides, anyone who helped and supported me in order to push this work to light. Finally, my deep heartfelt gratitude is belonged to my family who supported me. Many special thanks will not be enough to my son "Ali", you are the moon that lights my darkness. Despite your small size, you gave me the energy of love exceeds the dimensions of the universe. Lastly, I hope you to grow up and be proud of your mother.

Table of Contents

Thesis SummeryV
KeywordsVI
AcknowledgementVII
Table of ContentVIII
List of figuresXII
List of tablesXV
List of abbreviationsXVI
List of symbolsXVII
Chapter 1 Introduction.
1.1 Renewable energy and photovoltaic1
1.2 Photovoltaic
1.2.1 First generation solar cell
1.2.2 Second generation solar cell
1.2.3 Third generation solar cell
1.3 Supercapacitor for photovoltaic application6
1.4 Thesis objectives
1.5 Thesis outlines8
Chapter 2 Energy storage devices.
2.1 Introduction9
2.2 Supercapacitor
2.3 Supercapacitor construction

2.3.1 Electrode	12
2.3.2 Separator	13
2.3.3 Electrolyte	14
2.4 Classifications of Supercapacitor	15
2.4.1 Electrochemical double layer capacitor	16
2.4.2 Pesudocapacitor	17
2.4.3 Hybrid	18
2.5 Carbon based material	18
2.5.1 Carbon nanotubes	18
2.5.2 Activated carbon	18
2.5.3 Graphene family	19
2.5.3.1 Thermal reduction	19
2.5.3.2 Chemical reduction	20
2.5.3.3 Laser reduction	20
2.5.3.4 Ultraviolet reduction	20
2.6 Conducting polymers	21
2.7 Composition of RGO/PANI	21
Chapter 3 Fabrication of Supercapacitor	
3.1 Materials	22
3.2 General description of used equipment in chemical preparation	23
3.2.1 Distillation system	25

	3.2.2 DC sputtering VTC-600-2HD2	26
3.3	Preparation of Graphene Oxide (GO)	27
3.4	Preparation of PANI-RGO active material2	28
3.5	Device fabrication2	29
3.6	Microscopic measurements equipment3	31
	3.6.1 Dispersive Raman spectroscopy3	31
	3.6.2 X-ray diffraction3	33
	3.6.3 Field emission scanning electron microscope	34
	3.6.4 High resolution transmission electron microscope	35
3.7	Electrochemical measurements equipment	36
	3.7.1 Biologic VSP 300	36
Cha	apter 4 Study of the fabricated Supercapacitor.	
4.1	Microscopic analysis	37
4.2	Electrochemical analysis4	ļ 5
4	4.2.1 Cyclic voltmeter	15
4	4.2.2 Galvanostatic charge/discharge4	19
4	4.2.3 Life time stability5	53
4	4.2.4 Electrochemical impedance spectroscopy5	58
	apter 5 Electrical Implementation of SALDO.	
5.1	The SCALDO technique principles6	52
5.2	Series to parallel configuration of SCALDO6	55