

CRITERIA TO EVALUATE ENERGY SAVING AND PRODUCTION IN HOSPITALS: "NURSING UNITS"

By Noha Mohamed Ezz El-din Abdel setter Amin

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the Degree of

DOCTOR OF PHILOSOPHY In Architectural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT July 2019

CRITERIA TO EVALUATE ENERGY SAVING AND PRODUCTION IN HOSPITALS: "NURSING UNITS"

By Noha Mohamed Ezz El-din Abdel setter Amin

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
P.H.D. of Science
In
Architectural Engineering

Under the Supervision of

Prof. A. Eman Mokhtar Omar

Department of Architecture Faculty of Engineering MTI University, Cairo - Egypt

Prof. Hesham Sameh Hessen

Department of Architecture Faculty of Engineering Cairo University, Giza - Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

CRITERIA TO EVALUATE ENERGY SAVING AND PRODUCTION IN HOSPITALS: "NURSING UNITS"

By Noha Mohamed Ezz El-Din Abdel Setter Amin

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirement for
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
ARCHITECTURAL ENGINEERING

Approved by the Examining Committee:

Prof. Dr.HeshamSameh Hessen(Thesis Main Advisor)

Professor of Building Technology, Department of Architecture Engineering Faculty of Engineering, Cairo University

Prof. Dr. Ayman Hassaan Mahmoud (Internal Examiner)

Professor of LandscapeArchitecture, Department of Architecture Engineering Faculty of Engineering, Cairo University

Prof. Dr .EmanMohamed EidAttea(External Examiner)

Professorof History and Theories of Architecture, Department of Architecture EngineeringFaculty of Engineering, Shebin El Koum University

Engineer's Name: Noha Mohamed Ezz El-Din Abdel Setter Amin

Date of Birth: 13/11/1988 **Nationality:** Egyptian

E-mail: NOHAEZZ1@GMAIL.COM

Phone: 01007129290

Address: 62 said baderst, alwahast, shorouk city

Date of graduate 7/2010 **Date of M.Sc.** 9/2014

Registration Date: 1/ 10 /2014

Awarding Date: //2019 **Degree :** Ph.D.

Department: Architectural Engineering

Supervisors:

Prof. Dr. HeshamSameh Hessen(**Thesis Main Advisor**) Dr.EmanMokhtar Omar Mokhtar(**Thesis Advisor**)

Examiners: Prof. Dr. HeshamSameh Hessen(**Thesis Main Advisor**)

Prof. Dr .AymanHassaan Mahmoud(Internal Examiner)
Prof.Dr. Eman Mohamed Eid(External Examiner)

Title of Thesis:

Criteria to Evaluate Energy Saving and Production in Hospitals: "Nursing Units"

KEYWORDS: Energy, energy efficiency in hospitals, energy conservation, green hospitals, zero energy hospitals.

Summary:

Hospital buildings consume about 4-6% of energy consumption in the construction sector. The operation cost of these buildings represents 25 to 60% of public health expenditure.

Hospitals may be daily exposed to a large amount of renewable energy as solar and wind energy which are not fully considered in hospital designs.

The basic energy influencing parameters has been enumerated and assessed to be an input data for evaluating hospitals from an architecture point of view .A proposed design for a nursing unit will be introduced taking into account all the energy influencing parameters and will be finally evaluated by Autodesk , Green Building Studio.

Acknowledgments

I wish to express my sincere thanks and gratitude and appreciation to my distinguished professors:

Prof. Dr. Hesham Sameh Hussein

Professor of building technology , Architectural Engineering Department, Faculty of Engineering, Cairo University

He helped me always without boredom and faith in my message and for his supervision, encouragement, valuable advises and criticism that helped me to produce this work.

I wish to express mysecond sincere thanks and gratitude to

Dr. Eman Mokhtar Amr

Lecturer of Architecture, Department of Architectural Engineering, Faculty of Engineering, Modern University

For her help, advice, guidance and keenness to read every word and help me overcome any difficulties

I would also like to thank my professors who have been honored with their assessment of this work:

Prof.Dr. Ayman Hassaan Mahmoud

Professor of landscape , Architectural Engineering Department, Faculty of Engineering, Cairo University.

Prof.Dr. EmanM. Eid Attia

Professor of Architecture, History and Theories, Architectural Engineering Department, Faculty of Engineering, Shebin El Koum University.

To accept the invitation to attend to discuss this research, calling God to be accepted, they have full of pride and appreciation.

Thank you very much

I am also wishing to express my deep thanks to my colleges in architectural department, for their cooperation.

Dedication

I am also very grateful to my family who supported me financially and morally, my father and the representative of the Supreme Brigade Professor Dr. Engineer /Ezz eldine Abdel-Sattar, who shared this dream with me and I will always carry on to continue working hard.

Ms. Samia Saad Amin, who has always extended her hand to God to continue this work

My husband, Dr. Hassan Fawzy Al-Toukhi, who helped me. I thank him for his support and patience to help and encourage me and for his appreciation of my work and faith in my message.

My dear son / Ali Hassan Fawzy, who struggled with me.

Table of Contents

	Contents	Pa
	wledgments	i
	ation	ii
	of Contents	iii
	Tables	vii
	Figures	viii
	Chart	xii
	et	xiii
	uction	xiv
	rch Problem	xiv
<i>J</i> I	hesis	xiv
-	ons	XV
	rch Objectivesrch Methodology	XV
	rch Contents	XV XVi
	PTER 1: Historical Background	1
1.1.	Introduction	2
1.2.	Historical Development of hospitals With regard to energy	2
1.3.	Pharaonic civilization	2
1.4.	Greek civilization	3
1.5.	Roman civilization	4
1.6.	Christian Ages in the West (900 – 324)	5
1.7.	Medieval times	5
1.8.	Islamic civilization	5
1.9.	Renaissance architecture in the 19th century (1400 – 1850)	7
1.10.	Modern Age (1850_1930)	8
1.11.	Post-World War II period	10
1.12.	In the early 1960s	11
1.12.	Late 20th century and the Beginning of the 21st century	12
1.13.	1.13.1. Green Design architecture	12
	g .	13
	1.13.1.1. Green Hospital	
	1.13.1.2. Waste and Material benefits of Green buildings	13 14
1.14.	A zero-Energy Building	15
1.14.	1.14.1. Net Zero Energy For Hospital Buildings	16
1 15		
1.15.	CONCLUSION	17
	PTER 2: Energy Efficiency Parameters in Hospitals	18
2.1.	Introduction	19
2.2.	Energy Optimization in hospital	19
2.3.	Hospitals and energy consumption	20
2.4.	Energy saving potential in hospital	21
	2.4.1 Lighting	21
	2.4.2 Heating	21
	2.4.3 Air condition	21
	2.4.4 Electricity consumption	21
2.5.	Problems associated with energy in hospitals	21
2.6.	Introduction to energy efficiency in hospitals	21

2.7.	Energ	gy Efficiency parameters in Hospitals	. 22
	2.7.1	· · · · · · · · · · · · · · · · · · ·	
		2.7.1.1 Landscape	
		2.7.1.2 Building Mass	. 23
		2.7.1.2.a. Building Orientation	
		2.7.1.2.b. Building Shape	
		2.7.1.2.c. Building Composition	
		2.7.1.3 Building Envelope	
		2.7.1.3.a.Walls	
		2.7.1.3.b.Openings	
		2.7.1.3.c.Roofs	
2.8	Param	neters Regarding Energy Production	
	2.8.1		
		2.8.1.1 Landscape	
		2.8.1.2 The Building Externally	
		3.8.1.2.a. Openings	
		2.8.1.3 Facades and roof	
	2.8.2		
	2.0.2	2.8.2.1 Floors	
		2.8.2.2 Walls	
2.9	Affor	dability	
2.)	2.9.1	Green Economy	-
2.10		lusion	
		3: Design Criteria for Nursing Units	
3.1		luction	_
3.2		ification of hospital buildings and health facilities	_
3.2		Hospital types according to quality	
	3.2.1.		
	3.2.2.	3.2.2.1. Main considerations for the size of hospitals	_
3.3	Archi	tectural configuration of hospitals	
3.3	3.3.1		
	3.3.1	The horizontal direction of the design of hospital buildings	
2.4			
3.4		requirements for general nursing units	49
	3.4.1	Design requirements	
		3.4.1.1.Components of the Nursing Unit: Patient Space	
	3.4.2	1 · · · · · · · · · · · · · · · · · · ·	
		3.4.2.1.Patient rooms	. 53
		3.4.2.2. Nursing Station	. 53
		3.4.2.3. Detection and treatment room	n 54
		3.4.2.4. support services	
		3.4.2.5. Intensive care unit	
		3.4.2.5.a. ICU layout	
		3.4.2.5.b Design requirements for I.C.U	
		3.4.2.6.Horizontal and vertical movement spaces	
		3.4.2.6.a. Horizontal communication elements	
	3.4.3	1	
		3.4.3.1 Duplex system	
		3.4.3.2 Corridor system	58

		3.4.3.3 Open System: (Florence Nightingale)
		3.4.3.4 Cruciform system
		3.4.3.5 Radial system
		3.4.3.6 Racetracksystem
3.5	Factor	rs affecting the form of nursing units
3.3	3.5.1	Environmental considerations in nursing unit
	3.3.1	3.5.1.1 Natural lighting in nursing unit
		3.5.1.1.a. Benefits of Natural Light for Hospitals
		3.5.1.2 Natural Ventilation in nursing unit
		3.5.1.2.a. The top benefits
		3.5.1.3 Noise reduction in nursing unit
		3.5.1.4 Air Humidly in nursing unit
		3.5.1.4.a. Benefits of Condi air humidification in healthcare
		environments
		3.5.1.5 Temperature in nursing unit
		3.5.1.5.aHeat reduction requirements for nursing units
		3.5.1.6. Indoor Air Quality
		3.5.1.7. Thermal Comfort
	352	For example on environmental patient tower
	3.3.2	3.5.2.1 Architectural Description
		*
		3.5.2.2 Ward Tower Design
_	<i>a</i> 1	3.5.2.3 Environmental considerations in a ward tower
.6		usion
		4: Analytical Case study of global projects
1.		odology of the analytical study
		Foundations of selection of study cases
		Objectives of the analytical study
	4.1.3.	\mathcal{L}
		Select search tools
		Criteria for selecting the study sample
.2.		sis of the case study sample
.3.		study samples
	4.3.1.	Taiwan centers for disease control
		4.3.1.1. Architectural Description
		4.3.1.2. Parameters regarding energy conservation
.4.		neters regarding energy production
	4.4.1.	UCSF Medical Center at Mission Bay ,san Francisco, California
		4.4.1.1. Architectural Description
		4.4.1.2. Nursing Unit Design
		4.4.1.3. Parameters regarding energy conservation
		4.4.1.4. parameters regarding energy production
		4.4.1.5. Standardization process rationalization and production of
		energy
	4.4.2.	Seoul National University Hospital Medical Mall, South Korea
		4.4.2.1. Architectural Description
		4.4.2.2. Parameters regarding energy conservation
		4.4.2.3. Standardization process rationalization and production of
		energy
5	Concl	••

CHA	PTER 5	5: Application on Proposal design	90
5.1			91
5.2.			91
5.3.	Hospit	tals in Egypt	91
5.4.			92
5.5.	Metho	odology of the applied study	92
			94
5.6.			94
			95
			95
			96
			97
			98
	5.6.4.	Criteria regarding energy production	10
		5.6.4.1. Land scape	102
			103
		5.6.4.3. The building internally	10:
5.7.	Evalua	ation of Design Proposal	10:
<i>.</i> ,,.		Mathematical calculations	100
	5.7.1.	5.7.1.1.Calculate the product energy from (Wind and solar powered	10.
		hybrid street lamp)	100
		5.7.1.2. Calculate the product energy from Photovoltaic cells	100
		5.7.1.3. Calculate the product energy from Wind turbines	10
		5.7.1.4. Calculate the product energy from Tiles for energy	10
		production	10
		5.7.1.5.The general result	10′
	572	Evaluation of Design Proposal by Calculate the average rating	10
	3.1.2.	(probability method)	10′
		5.7.2.1.The general result	103
	572	Evaluation of Design Proposal by Autodesk, Green Building Studio	103
			100
5 8 C	5.7.4.	on	112
		C. C 1 1 D 1 . 4	11.
6.1.		ral Findings and Recommendations	113
6.2.		•	114
0.2.		al Results	114
		Results of the theoretical study	
		Results of the analytical study	115
<i>c</i> 2		Results of the applied study	110
6.3.		nmendations	110
		At the level of academic education	110
		At the level of architects and practitioners	11'
		At the state level	11'
		At the level of owners of health centers	11'
6.4.	Benefi	iciaries of research	117
Refere	ences		118

LIST OF TABLES

Tables	Contents	Page
	CHAPTER 3: Design Criteria for Nursing Units	
Table 3.1:	Need of fresh air in hospitals	63
CHAPTER 4: Analytical Case study of global projects		
Table 4.1:	Comparison of criteria for evaluation of the three elements of global	88
	models	
CHAPTER 5: Application on Proposal design		
Table 5.1:	Parameters regarding energy conservation	96
Table 5.2:	Parameters regarding energy production	101
Table 5.3:	Parameters for energy saving and production	108
Table 5.4:	The maim result of the Hospital model performance by (Green	110
	Building Studio) (GBS)	

LIST OF FIGURES

Figures	Contents	Page
	CHAPTER 1: Historical Background	
Figure 1.1:	Perspective analysis of Luxor Temple in Egypt	3
Figure 1.2:	The God of Asclepiusis the god of healing and health in Greece	3
Figure 1.3:	Reconstruction of the facade of temple of Aesculapius at Epidaurus	4
Figure 1.4:	Plan, Epidauros, Temple of Asklepios	4
Figure 1.5:	Plan of the Roman military hospital at Vindonissa. The	4
	four-membered circulation corridor flanked by rows of paired wards	
Figure 1.6:	Model of the Roman military hospital at Vindonissa	4
Figure 1.7:	Plan to St. Gallen Hospital, Switzerland	5
Figure 1.8:	The Layout of the St. Gallen religious complex	5
Figure 1.9:	The façade and plan of a mosque and the BimarstanQalawun	6
Figure 1.10:	The courtyard where patient rooms were around while the central	6
	courtryard featured a large rectangular pool and well	
Figure 1.11:	Plan of BimaristanArghun in Aleppo, Syria	7
Figure 1.12:	Plan to Catholic Hospital of Spain (1501-1511)	8
Figure 1.13:	Isometric to Catholic Hospital of Spain	8
Figure 1.14:	The royal infirmary at harts hill was one of the earliest hospital to be	8
	built on the pavilion system favoured by florence nightingale	
Figure 1.15:	Interior shot to award A so-called Nightingale ward at Hampstead	9
	Smallpox Hospital in London, with its windows open at top and	
	bottom	
Figure 1.16:	The Herbert Hospital, Woolwich - Bird's eye view "The Builder" 14	9
	April 1866	
Figure 1.17:	The Herbert Hospital, Woolwich - Ground Floor Plan built on the	10
Ti 440	pavilion system "The Builder" 14 April 1866	44
Figure 1.18:	In Post-World War II period Evolution of health care, from "hope" to	11
E' 110	"podium on platform" type buildings	4.4
Figure 1.19:	Maadi Hospital for the Armed Forces on the Nile Corniche directly	11
E: 1 20.	opened in 1965	10
Figure 1.20:	Example of a green hospital were energy aspects are of agreat consideration	12
Figure 1 21.	Shanghai International Hospital (Green Concept)	15
Figure 1.21:	Shanghai International Hospital	15
Figure 1.22:	CHAPTER 2: Energy Efficiency Parameters in Hospitals	15
Figure 2.1:	Demonstrates the use of trees to control the direction of the air	23
riguite 2.1.	Directing the air to the building and venting it and protecting the	23
	building from undesirable wind	
Figure 2.2:	The master plan to The north London or university college hospital	24
	with pavilion system is widely recognized	
Figure 2.3:	Sketch for General Hospital explains external surfaces to solar	24
8	radiation Building Composition	
Figure 2.4:	Perspective to the Medical Center Replacement.	25
Figure 2.5:	shows some forms with high shape factor	25
Figure 2.6:	Shows some building compositions of hospitals that can cast shadows	25
	on facades	

Figures	Contents	Page
Figure 2.7:	Aerial of site plan.	26
Figure 2.8:	Different building compositions and projections	26
Figure 2.9:	A New Standard for Healthcare in Singapore, Mount Elizabeth Novena	27
	Hospital, Novena, Singapore. White colored surfaces have a high	
	albedo,	
Figure 2.10:	External shading devices in the form of colestra in hospital	27
Figure 2.11:	Interior and exterior shot to 'smart façades' of Torres de Especialidades	28
	in Mexico City are able to neutralise air pollutants.	
Figure 2.12:	Different system to design Natural ventilation inside Building	28
Figure 2.13:	North Mediterranean Health Center Almeria/Spain,2010	29
Figure 2.14:	The use of large surfaces of openings (windows and skylight) to take	30
	fresh air by incorporating natural ventilation, light and outdoor views	
Figure 2.15:	External shading devices in the form of vertical and horizontal	31
	projections	
Figure 2.16:	The ratio between the area of the openings and the ratio of breakers,	31
T: 0.4	flower basins and dam area and open in the facade	
Figure 2.17:	Client Hainan Cancer Hospital, Expertise Health, Hainan, China. 2012,	32
Figure 2.18:	Van AndelInstitute	33
Figure 2.19:	Roofs are built in a variety of shapes	33
Figure 2.20:	Kenya Women's and children's wellness centre ,Nairobi Kenya, it has	33
T1 0.04	different roof shapes and each has an effect on energy.	
Figure 2.21:	The Van Andel Institute's new addition showing the roof shape	34
Figure 2.22:	Courtyard IN Mercy - Springfield Hospital Patient Towe	34
Figure 2.23:	Crosse section in The courtyard geometry In vest fold hospital	35
Figure 2.24:	Detail of the shape of tiles	36
Figure 2.25:	Units as they arise,road stores energy during the day, then glows during the night	36
Figure 2.26:	highway	36
Figure 2.27:	Solar PV Parking Structure	37
Figure 2.27:	Solar Powered and wind Street Lamp	37
	Artificial Wind Tree	37
Figure 2.29:		
Figure 2.30:	Leaves after injection	38
Figure 2.31:	Units at night close to use Lamppost in masder city mall ,United Arab Emirates	38
Figure 2.32:	Perspective of the day - scene illustrates the shape of solar umbrellas	38
Figure 2.33:	Cell showing the technology of glass panels supported by photovoltaic	39
	cells.	
Figure 2.34:	detailing the metal sectors bearing the technology of installation of	39
	glass panels supported by photovoltaic cells	
Figure 2.35:	Explanation Sky Light from the inside	39
Figure 2.36:	photovoltaic units to transform solar energy into electrical energy	39
Figure 2.37:	Distribution of units Photovoltaic cells on surfaces of different shapes	40
Figure 2.38:	The distribution of photovoltaic cells on the interfaces	40
Figure 2.39:	Plan of an example applying on p.v cells	40
Figure 2.40:	The Corbuilding, Miami, Florida, U.S.A, 2011	41
Figure 2.41:	(OklahomaMedical Research) ,VengerWindUnveils World's Largest	41
-	Rooftop Wind Farm in Oklahoma City	

Figures	Contents	Page
Figure 2.42:	Detail of the unit	42
Figure 2.43:	The unit on the roof of the building	42
Figure 2.44:	Distribution of tiles inside in one of the main tracks	42
Figure 2.45:	The shape of the roller and its distribution under the carpet	43
Figure 2.46:	Demonstrates the holes that help the sound absorption process	43
	CHAPTER 3: Design Criteria for Nursing Units	
Figure 3.1:	Example of a vertical hospital and sectional view of floor	47
	arrangements of St. joseph's hospital	
Figure 3.2:	The horizontal direction of the design of hospital buildings, Extend	48
	Helsingborg Hospital in Sweden by Schmidt Hammer Lassen	
Fi 2.2	Architects,	40
Figure 3.3:	Different models for horizontal hospital configuration	48
Figure 3.4:	Analysis of one to the horizontal shapes proposed in hospital design	49
Figure 3.5:	Plan Analysis of the design of a complete nursing unit	51
Figure 3.6:	Plan of patient rooms building in Hospice Djursland, Denmark, it contain of Shading with vertical fins that provide passive shading to	52
	the inner spaces.and courtyard	
Figure 3.7:	Sketch to Explanation of the internal dimensions of the patients' rooms	53
	(single, double and dormitory) with a bath	
Figure 3.8:	Different solution method for nursing station, it is the center of the	54
	nursing unit, Plan of Typical bed tower floor ,St. Joseph's hospital.	
Figure 3.9:	An explanation of the components of the nursing station	54
Figure 3.10:	Nursing Services contains, Services for patients and visitors, Source:	55
	The Researcher	
Figure 3.11:	Different form to solve ICU configurations: rectangular (A), circular	56
Fi 2.12	(B), triangular (C), and square (D).	
Figure 3.12:	Design requirements for I.C.U	57
Figure 3.13:	The most important forms adopted in nursing units	58
Figure 3.14:	Different shots to natural lighting through the ceiling and wall in Ng Teng Fong General Hospital in the South East Asia Region.	60
Figure 3.15:	Provide upper light for disease rooms that do not lie on the front and	61
ligure 3.13.	clarify the location of openings for the corridor, Hospice Djursland,	01
	Denmark, Patient room unit	
Figure 3.16:	Combined wind and buoyancy-driven natural ventilation in the	62
_	courtyard type (outer corridor) hospital	
Figure 3.17:	Finishing materials for corridors inside the nursing unit so that they are	62
T1	soundproofed	
Figure 3.18:	Factors to achieve thermal comfort inside the building	64
Figure 3.19:	Floor plan of the wards, east and west, where the study was ndertaken.	66
	A–H: locations of the 8 Rotronic sensors. 1–3: locations of the 3 indoor climate measurement stands (ICMS)	
	·	
Figure 3.20:	The plan to Ng Teng Fong General Hospital is orientated in a	66
	northwest/southeast direction and the Curves increase air speed ,The	
Figure 2 21.	design takes sawtooth plan. The saw tooth plan for words and rooms are providing every nationt.	67
Figure 3.21:	The saw tooth plan for wards and rooms are providing every patient with a window to provide natural ventilation and outdoor views	U/
Figure 3.22:	Each room include the amount of sunshine that enters a room, the	67
115410 3.22.	view, and patient privacy. The facade design is shading devices	07
	include sliding sunscreens and light shelves	
Figure 3.23:	Energy-saving strategies include (Passive design – energy efficiency –	68
	Renewable energy _Internal courtyards).	

Figures	Contents	Page
	CHAPTER 4: Analytical Case study of global projects	
Figure 4.1:	The Content of project Isometric shot	73
Figure 4.2:	Sketch the concept of Taiwan's Bio shell Center for Disease Control	73
Figure 4.3:	The facade for Nature lighting regulate interior climate while allowing	74
	light	
Figure 4.4:	Solar shading system	74
Figure 4.5:	The Content of project Isometric shot	78
Figure 4.6:	Patient exam room finishes selected with extraordinary care Healthy	79
	Materials	
Figure 4.7:	Single room design with providing glare-free direct daylight.	79
Figure 4.8:	High performance strategies.	80
Figure 4.9:	The Section in building show the contain under ground	84
Figure 4.10:	Certain wall and sky light are grade space was designed to feel light	85
	and natural	
Figure 4.11:	The main entrance of the mass from the greenRoof	85
	CHAPTER 5: Application on Proposal design	
Figure 5.1:	The site of project in New Capital in Egypt	95
Figure 5.2:	Typical floor of proposed design	95
Figure 5.3:	Diagram of a room cooled with wall cooling and natural air ventilation	97
	arrow another room diagram from the collection, all with the same	
	point of view, easy to combine	
Figure 5.4:	Patient room analysis with natural ventilation and best orientation	97
Figure 5.5:	Interior shot showing the broken lines in the mass with natural light	97
	and ventilation inside the ward	
Figure 5.6:	The block is designed on a H-shaped structure with cracking in the	98
T. = =	mass and tilting the terraces at a 45 °	00
Figure 5.7:	The façade is designed to transform air pollutants into harmless	98
F	chemicals	00
Figure 5.8:	A well-designed building envelope	99
Figure 5.9:	curved solar panel, insulated solar window and double glass solar	100
Figure 5 10.	panel Elements in compareted in reaffor analyst consequentian	100
Figure 5.10:	Elements incorporated in roof for energy conservation	100
Figure 5.11:	Different techniques regarding energy production in the proposed design	102
Figure 5.12:	solar roadways to converts solar energy into electrical energy	102
Figure 5.12: Figure 5.13:	The use of the solar PV structure in the main parking to convert solar	102
rigule 3.13.	energy into electrical energy	103
Figure 5.14:	Detail of wind and solar powered hybrid street lamp and its main	103
11guit 3.14.	components	105
Figure 5.15:	Photovoltaic cells stored in glass panels	104
Figure 5.16:	Different type of solar cell on walls and roof	104
Figure 5.17:	Wind turbines integrated in the building	104
Figure 5.18:	Tiles for energy production in the main corridors	105
Figure 5.19:	used for cladding walls to reduce noise within the vacuum	105
Figure 5.20:	The main steps for how to evaluate the proposed model on green	108
1 1941 0 0.20	building studio program	100
Figure 5.21:	The main process for interring the data about the building	109
	1 6	