

Evaluation & Processing of Egyptian Diatomite for Insulation

A Thesis Submitted in partial fulfillment of Master Degree
In
Inorganic and Analytical Chemistry

By Nehal Mahmoud Abdallah Mahmoud

B. Sc. Chemistry & Physics, Ain Shams University, (2008)

To

Chemistry Department, College of Girls For Arts, Science and Education Ain Shams University

Supervised by

Prof. Dr. Suzan S. Ibrahim

Prof. Dr. Faten Z.Mahmoud

Professor of Minerals Processing

Assistant Professor of Physical Chemistry

Dr. Tamer S. Abdel Kader

Department of Refractories, ceramics and Building Materials, National Research center, Cairo, Egypt

(2019)

"Evaluation& Processing of Egyptian Diatomite for Insulation"

Thesis Advisors	thesis Approved
Prof. Dr. Faten Zakaria Mahmoud	
Assistant Professor of Physical Chemistry,	
Department of Chemistry, College of Girls For	Arts Science and
	Arts, belefice and
Education, Ain Shams University.	
Prof. Dr. Suzan Sami Ibrahim	
Professor of Minerals Processing, Central Meta	llurgical Research
and Development Institute (CMRDI), Helwan,	Cairo, Egypt
	, 671
Dr. Tamer Samy Abdel Kader	
Department of Refractories, ceramics and	Building Materials,
National Research Centre.	
Head of chemistry Depa	rtment
Prof. Dr Mansoura Es	smael
	•••••
Approval of Chemistry Department Council	/ / 2019
Approval of Faculty Council	/ / 2019
Approval of University Council	/ / 2019
•	

QUALIFICATIONS

Student Name: Nehal Mahmoud Abdallah Mahmoud

Scientific Degree: B.Sc

Department: Chemistry and Physics

Name of college: College of Girls For Arts, Science and

Education

University: Ain Shams University

B.Sc. Graduation Year: 2008

Note

The candidate has attended courses for one year, covering the following topics:

- Spectroscopy.
- Structural inorganic chemistry.
- Advanced inorganic chemistry.
- Advanced coordination chemistry.
- Advanced reaction mechanisms.
- Photochemistry.
- Kinetics and catalysis chemistry.
- Quantum chemistry.
- Thermodynamics.
- Instrumental analysis.
- English language.

She has successfully passed a written examination in these courses, in partial fulfillment for the master degree of science.

ACKNOWLEDGEMENT

I am deeply thankful to Allah, Lord of the world for showing me the right path and helping me to complete this work.

I would like to express my deep gratitude to **Prof. Dr. Faten Zakaria Mahmoud,** Assistant professor of physical Chemistry, Department of Chemistry, College of Girls For Arts, Science and Education, Ain Shams University for her kind supervision, continuous encouragement, valuable advice and facilities which she offered me through the progress and finishing this work.

With sincere respect and gratitude, I would like to thank **Prof. Dr. Suzan Sami Ibrahim**, professor of Minerals Processing, Central Metallurgical R &D Institute for her supervision, kind help, serve raw materials and encouragement, valuable assistance for helping me in revision, The guidance and support especially during the latest phase of the present work.

I really appreciate the efforts of **Dr. Tamer Samy Abdel Kader,** Researcher of Chemistry, Department of Refractories, ceramics and Building Materials, National Research Centre, for his continuous help in my entire experimental work, encouragement and support during carrying out this work.

I wish to express my deep appreciation from my deeply heart to **Prof. Dr. Samir Bushra Hanna**, Professor of Chemistry and Technology of Refractories, National Research Centre, for his respective suggestions and valuable planning the points and scheme of the present work his fatherly guidance, supervision, fruitful discussion, great criticism, constructive criticism, correcting the manuscript and continued help during the course of this work.

CONTENTS

		Page
	ACKNOWLEDGEMENT	
	LIST OF TABLES	V
	LIST OF FIGURES	VIII
	AIM OF THE STUDY	ΧI
	ABSTRACT	XIV
	CHAPTER I	
	INTRODUCTION	
I.1.	Refractory Materials	1
1.2.	Types of Insulating Refractories	7
1.3.	Applications and Advantages	8
1.4.	Heat Insulating Materials	9
1.5.	Thermal Insulation	28
	CHAPTER II	
	EXPERIMENTAL	
II.1.	Main starting materials	31
II.1.1.	Chemical Composition	31
II.1.2.	Mineral composition of the investigated diatomite samples	33
II.1.3.	Surface area and particle size distribution of diatomite samples	39
II.2.	Secondary starting materials	43
II.3.	Test – specimen's preparation	46

II.3.1		
	Part 1: Porous diatomite specimens	46
11.3.2	Part 2: Porous diatomite-mix specimens	47
II.3.3	Part 3: Carbon and Starch Addition	48
II.4.	Testing methods of Investigation	49
II.4.1.	BET and X-ray fluorescence (XRF)	49
11.4.2.	X-ray Diffraction Analysis (XRD)	51
II.4.3.	Measurement of Physical Properties	52
11.4.4.	Scanning Electron Microscopy (SEM)	53
11.4.5.	Pore structure	53
	CHAPTER III	
	RESULT AND DISCUSSION	
III.1.	Part 1: Porous diatomite specimens	
		56
III.1.1.	Physical properties of Fired diatomite specimens	56 56
III.1.1. III.1.2	·	
	Physical properties of Fired diatomite specimens	56
III.1.2	Physical properties of Fired diatomite specimens Mineral composition of fired diatomite samples	56 60
	Physical properties of Fired diatomite specimens Mineral composition of fired diatomite samples Part 2: Porous diatomite mixed specimens Physical properties Fired Masakheet - Kasr El Sagha 2 Mix Specimens	56 60 64
	Physical properties of Fired diatomite specimens Mineral composition of fired diatomite samples Part 2: Porous diatomite mixed specimens Physical properties Fired Masakheet - Kasr El Sagha 2 Mix Specimens Fired Masakheet - Demia yellow 2 Mix Specimens	56 60 64 64

		1
III.2.1.4.	Fired Kasr El Sagha 1 – Demia yellow 1 Mix	79
	Specimens	
III.2.2.	Mineral composition	84
III.2.2.1.	Fired Masakheet - Kasr El Sagha 2 diatomite	84
	Specimens	04
III.2.2.2.	Fired Masakheet - Demia yellow 2 diatomite	85
	Specimens	85
III.2.2.3.	Fired Masakheet - Demia yellow 1 diatomite	86
	specimens	
III.2.2.4.	Fired Kasr El Sagha 1 - Demia yellow 1 diatomite	89
	specimens	
III.3.	Part 3: Carbon and Starch Addition	93
III.3.1.	Masakheet-Kasr El-Sagha 2, and Masakheet-	93
	Demia Yellow 2 diatomite specimens	
III.3.2.	Masakheet – Demia Yellow 1 and Kasr El-Sagha 1	94
	- Demia Yellow 1 diatomite specimens	
III.3.3.	Porosimetric study	99
III.3.4	Microscopic study	101
III.4.	General Consideration	107
	SUMMARY	114
IV.1.	Samples Characterization	115
IV.1.1.	Chemical analysis of the original samples	115
IV.1.2.	X-ray diffraction results	115
IV.1.3.	Surface area measures	116
IV.1.4.	Particle size distribution	117

IV.2.	Rational mixing process of the samples	117
IV.3.	The Effect of the addition of pore forming agents	119
IV.4.	Work Conclusions and Recommendations	121
	REFERENCES	122
	ARABIC SUMMARY	

LIST OF TABLES

	Title of table	
Table No.		Page
Table 1:	Classification of Heat-Insulating Materials	
	according to ASTM 155-97 (2002) and ISO	5
	2245–1990 Standards	
Table 2:	Chemical composition of the investigated	45
	diatomite samples	45
Table 3:	Chemical composition of diatomite samples	46
	(calculated on fired base)	40
Table 4:	Mineral composition of investigated	50
	diatomite samples	30
Table 5:	Surface area, pore volume, and D50	51
	measures of the raw diatomite samples	51
Table 6:	The specific surface area of the pore former	52
	agents	54
Table 7:	Bulk density of five diatomite specimens	57
	fired at temperature of 800 to 1100°C.	31
Table 8:	Change in dimension of five diatomite	
	specimens fired at temperature of 800 to	58
	1100°C.	
Table 9:	Open porosity% of diatomite specimens	58
	fired at 1100°C.	30
Table 10:	Bulk density of Masakheet - Kaser El Sagha	
	2 diatomite specimens fired at temperature	65
	of 900 to 1100°C.	
Table 11:	Change in dimension of Masakheet - Kaser	
	El -Sagha 2 diatomite specimens fired at	65
	temperature of 900 to 1100°C.	
Table 12:	Open porosity% of Masakheet - Kaser El	
	Sagha 2 diatomite specimens fired at	65
	1100°C.	
Table 13:	Chemical Composition of Masakheet - Kasr	67
	El Sagha 2 diatomite Mixtures	07

	_	
Table 14:	Chemical Composition of Masakheet-Kasr	
	Elsagha 2 diatomite Mixture (Calculated on	68
	fired base)	
Table 15:	Bulk density of Masakheet - Demia yellow 2	
	diatomite specimens fired at temperature of	70
	900 to 1100°C.	
Table 16:	Change in dimension of Masakheet - Demia	
	yellow 2 diatomite specimens fired at	70
	temperature of 900 to 1100°C.	
Table 17:	Open porosity% of Masakheet - Demia	
	yellow 2 diatomite specimens fired at	70
	1100°C.	
Table 18:	Chemical Composition of Masakheet –	70
	Demia Yellow 2 diatomite Mixtures.	72
Table 19:	Chemical Composition of Masakheet-	
	Demia Yellow 2 diatomite Mixtures	73
	(Calculated on fired base).	
Table 20:	Bulk density of Masakheet - Demia yellow 1	
	diatomite specimens fired at temperature of	75
	900 to 1100°C.	
Table 21:	Change in dimension of Masakheet - Demia	
	yellow1 diatomite specimens fired at	75
	temperature of 900 to 1100°C.	
Table 22:	Open porosity% of Masakheet - Demia	
	yellow 1 diatomite specimens fired at	75
	1100°C.	
Table 23:	Chemical Composition of Masakheet –	77
	Demia Yellow 1 diatomite Mixtures	77
Table 24:	Chemical Composition of Masakheet –	
	Demia Yellow 1 diatomite Mixtures	78
	(Calculated on fired base)	
Table 25:	Bulk density of Kaser El Sagha 1- Demia	
	yellow 1 diatomite specimens fired at	80
	temperature of 900 to 1100°C.	
Table 26:	Change in dimension of Kaser El Sagha 1-	
	Demia yellow 1 diatomite specimens fired at	80
	temperature of 900 to 1100°C.	
<u> </u>		

Table 27:	Open porosity% of Kaser El Sagha 1- Demia yellow 1 diatomite specimens fired at 1100°C.	80
Table 28:	Chemical Composition of Kasr Elsagha 1– Demia Yellow 1 diatomite Mixtures.	82
Table 29:	Chemical Composition of Kasr Elsagha 1 – Demia Yellow 1 diatomite Mixtures (Calculated on fired base).	83

LIST OF FIGURES

Fig No.	Title of figure	Page
Fig 1:	Different Diatomite Deposits in El-Fayoum Depression, Egypt.	23
Fig 2:	Diatomite: structure of the global production by country.	30
Fig 3:	Global diatomite reserves as of 2018, by country (in 1,000 metric tons).	30
Fig 4:	X-ray diffraction patterns of the Masakheet and Kasr- El sagha 2 diatomite specimens.	37
Fig 5:	X-ray diffraction patterns of the Demia yellow 1, Demia yellow 2 and Kasr El sagha 1 diatomite specimens.	38
Fig 6:	Particle size analysis of the Masakheet diatomite specimens.	41
Fig 7:	Particle size analysis of the Kasr El sagha 2 diatomite specimens.	41
Fig 8:	Particle size analysis of the Demia yellow 2 diatomite specimens.	42
Fig 9:	Particle size analysis of the Kasr El sagha 1 diatomite specimens.	42
Fig 10:	Particle size analysis of the Demia yellow 1 diatomite specimens.	43
Fig 11:	The particle size distribution of carbon.	45
Fig 12:	The particle size distribution of corn starch.	45
Fig 13:	X-ray fluorescence (XRF).	49
Fig 14:	BT-2001(Liquid) laser particle size analyzer.	50
Fig 15:	Brunauer Emmett-Teller (BET).	50
Fig 16:	X-ray Diffraction Analysis (XRD).	51
Fig 17:	Scanning Electron Microscopy (SEM).	54
Fig 18:	Porosimeter.	55
Fig 19:	Effect of firing temperature on bulk density and change in dimensions.	59

Fig 20:	X-ray diffraction patterns of the fired	
	Masakheet, Demia yellow 2 and Kasr- El	62
	sagha 2 diatomite specimens.	
Fig 21:	X-ray diffraction patterns of the fired Demia	
	yellow 1 and Kasr El sagha 1 diatomite	63
	specimens.	
Fig 22:	The effect of firing temperature on physical	
	properties of Masakheet - Kaser El Sagha 2	66
	diatomite specimens.	
Fig 23:	The effect of firing temperature on physical	
	properties of Masakheet 2 - Demia Yellow 2	71
	diatomite specimens.	
Fig 24:	The effect of firing temperature on physical	
	properties of Masakheet - Demia Yellow 1	76
	diatomite specimens.	
Fig 25:	The effect of firing temperature on physical	
_	properties of Kasr Elsagha 1– Demia Yellow	81
	1 diatomite specimens.	
Fig 26:	X-ray diffraction patterns of (30-70)%	
	Masakheet - Kasr El Sagha 2 and	07
	Masakheet - Demia Yellow 2 specimens fired	87
	at 1100°C.	
Fig 27:	X-ray diffraction patterns of (50-50) %	
	Masakheet – Kasr El Sagha 2 and Masakheet	88
	- Demia Yellow 2 specimens fired at 1100°C.	
Fig 28:	X-ray diffraction patterns of (30-70)%	
	Masakheet - Demia Yellow 1 and Kasr El	91
	Sagha 1 - Demia Yellow 1 diatomite	91
	specimens fired at 1100°C.	
Fig 29:	X-ray diffraction patterns of (50-50)%	
	Masakheet - Demia Yellow 1 and Kasr El	92
	Sagha 1 - Demia Yellow 1 diatomite	74
	specimens fired at 1100°C.	

Fig 30:	The effect of addition starch and carbon on physical properties of mixtures of Masakheet and Kaser El Sagha 2 diatomite specimens fired at 1100°C.	95	
---------	--	----	--