

Design and Implementation of Rate Table Framework for Autopilot Testing

By

Mohannad Ahmed Mohamed Draz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements of the Degree of

DOCTOR OF PHILOSOPHY in

Aerospace Engineering

FACULTY OF ENGINEERING
CAIRO UNIVERSITY
GIZA, EGYPT
2019

Design and Implementation of Rate Table Framework for Autopilot Testing

By

Mohannad Ahmed Mohamed Draz

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements of the Degree of

in Aerospace Engineering

Under the Supervision of

Gamal Mahmoud El Bayoumi Ayman Hamdy Kassem

Professor, Faculty of Engineering, Cairo University

Professor, Faculty of Engineering, Cairo University

Mohamed Sayed Bayoumi

Professor, Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING
CAIRO UNIVERSITY
GIZA, EGYPT
2019

Design and Implementation of Rate Table Framework for Autopilot Testing

By

Mohannad Ahmed Mohamed Draz

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements of the Degree of

DOCTOR OF PHILOSOPHY

in

Aerospace Engineering

Approved by the Examining Committee

rof. Gamal Mahmoud El Bayoumi, Thesis Main Advisor
Prof. Ayman Hamdy Kassem, Advisor
Prof. Mohamed Sayed Bayoumi, Advisor
Prof. Mohamed Nader Mohamed Abuelfoutouh, Internal Examiner
Prof. Omar El Farouk Abd El Hameed, External Examiner
Professor at Military Technical College)

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT

Engineer Mohannad Ahmed Mohamed Draz

Date of Birth 6th of September, 1984

Nationality Egyptian

E-mail m_draz200@hotmail.com

Phone 0100 26326 17

Address 62 Zahraa St., Dokki, Giza, Egypt

Registration Date October 2011

Awarding Date

Degree Doctor of Philosophy

Department Aerospace Engineering Department

Supervisors:

Prof. Gamal Mahmoud El Bayoumi, Thesis Main Advisor

• Prof. Ayman Hamdy Kassem.

• Prof. Mohamed Sayed Bayoumi.

Examiner:

- Prof. Gamal Mahmoud El Bayoumi, Thesis Main Advisor
- Prof. Ayman Hamdy Kassem, Advisor
- Prof. Mohamed Sayed Bayoumi, Advisor
- Prof. Mohamed Nader Mohamed Abuelfoutouh, Internal Examiner
- Prof. Omar El Farouk Abd El Hameed, External Examiner (Professor at Military Technical College)

Title of the Thesis:

Design and Implementation of Rate Table Framework for Autopilot Testing

Key Words:

Rate Table, Design, Implementation, Autopilot, Aircraft, FPGA, Stepper Motor

Summary:

The rate gyro is an essential sensor for aircraft autopilot systems, as it is used to measure the angles rate of aircraft attitudes and feed them back to the autopilot algorithm. The accuracy and testing of such sensors is a must in order to guarantee the operation of the autopilot. Therefore a three degree of freedom rate table has been designed and manufactured to perform the testing of rate gyro sensors. The rate table is controlled using three stepper motors with high precision stepper driver supported with an FPGA controller to guarantee highly accurate and precise rate motion.

The aircraft under test is the Mantis mini UAV which is designed and manufactured in the Aerospace department in 2008. In order to design the autopilot for such UAV, the aerodynamic derivatives are needed to be measured. A wind tunnel testing and measurements for a quarter scale model for the Mantis has been done to measure the aerodynamic derivatives using a six degree of freedom force/torque sensor as well as manual tilting table to perform different angles of attack and angles of the side slip to the model. The results from the testing have been validated with a numerical results using ANSYS software.

Then, the aerodynamic derivatives will be used in the aircraft nonlinear simulation program which demonstrates the aircraft motion and also testing the autopilot and guidance algorithms on the aircraft. This simulation program is integrated with both the 3 DOF rate table as a simulator for the aircraft attitudes, and with the rate gyro sensor as a feedback signal to the autopilot algorithm. Thus, hardware in the loop platform was suitable for testing the components of the autopilot system; such as the sensor of rate gyro and the implemented algorithm of the designed autopilot.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name: Mohannad Ahmed Mohamed Draz Date: May 2019

Signature:

Acknowledgments

First, I would like to express my sincere gratitude to my main advisor Prof. Gamal El-Bayoumi for the continuous support of my Ph.D. study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D. study.

Also, I would like to thank my co-advisors:

Prof. Ayman Kassem, for his insightful comments and encouragement, also for the hard question which incented me to widen my research from various perspectives.

Also, I would like to thank Prof. Mohamed Bayoumi for his continuous support and strong guidance during the Ph.D. Journey.

My sincere thanks also go to Dr. Osama Saaid, Eng. Ahmed Khalil, Eng. Mustafa Moharam, and Eng. Mohamed Hetta, ASTL Team. Without their precious support, it would not be possible to conduct this research.

Last but not least, I would like to thank my family: my mother, my brother, and especially my wife for supporting me spiritually throughout writing this thesis and in my life.

Table of Contents

Disclaimer	i
Acknowledgments	iii
Table of Contents	V
List of Figures	vii
List of Tables	xi
List of Symbols and Abbreviations	xiii
Abstract	xv
Chapter One "Introduction"	1
1.1 Introduction	1
1.2 Literature Review	2
Chapter Two "Aircraft Aerodynamic Derivatives Wind-Tunnel Meas	urements"
	8
2.1 Chapter summary	9
2.2 Wind-Tunnel Measurements	9
2.2.1 Static aerodynamic derivatives measurement	9
2.2.2 Titling table	9
2.2.3 Force/Torque Sensor	11
2.2.4 Aircraft scaled model	12
2.2.5 Wind tunnel	15
2.2.6 Wind-tunnel airflow control	16
2.2.7 Data Acquisition System (DAQ)	17
2.3 Results and Verification	19
2.3.1 Longitudinal coefficients	19
2.3.2 Lateral coefficients	24
2.3.3 Aerodynamic derivatives summary	26
Chapter Three "Autopilot Design and Guidance Law"	29
3.1 Chapter summary	29
3.2 Aircraft Simulation Software	29
3.2.1 Aircraft Equation of Motions	29
Building and Testing the Aircraft Model	33

Jet-Engine Model	33
3.2.2 Aircraft Simulation Software	36
3.3 Autopilots and Guidance Functions	40
3.3.1 Guidance	40
3.3.2 Autopilot	43
3.3.3 Autopilot and guidance Implementation	46
3.4 Results	48
Chapter Four "IMU Hard-Ware-in-the-Loop Using Three Degree of free Rate Table"	
4.1 Introduction	59
4.2 Stepper Motors FPGA Control	59
4.3 Three Degree of Freedom Rate Table Design and Manufacturing	68
4.4 Aircraft Hardware in the Loop platform	77
4.5 Summary	89
Chapter Five "Conclusion and Future Work"	91
5.1 Conclusion	91
5.2 Future Work	91
References	93
Appendices	95
Appendix A "CAD Drawing"	95
Tilting Table	95
Aircraft Model	98
Wind Tunnel	101
Rate Table	104
Appendix B "Software Codes"	105
Aircraft Simulation (LabVIEW)	105
Rate Table Testing (LabVIEW)	116
Appendix C "NT-33 Aircraft Data"	119
Appendix D "Mini-40 Calibration Certificate and Accuracy Report"	123

List of Figures

Chapter one	
Fig. 1- 1: Murali et al. 2016 block diagram setup	2
Fig. 1- 2: Gans et al. 2009 block diagram	3
Fig. 1- 3: Wataru et al. 2016 calibration system	3
Fig. 1- 4: Jywe et al. 2007 calibration technique schematic	4
Fig. 1- 5: Saulnier et al. 2014 testbed	
Fig. 1- 6: Muhsin et al. 2018 test platform	5
Fig. 1-7: Jingxuan et al. 2018 HIL simulation system	6
Fig. 1- 8: Dehghani et al. 2017 HIL Structure	6
Fig. 1- 9: Kamali et al. 2016 HIL System Architecture	7
Fig. 1- 10: Jindeog et al. 2003 wind tunnel test setup	8
Fig. 1-11: Deluca et al. 2004 flexible and rigid body MAVs	8
Chapter two Eig. 2. 1. Two Dogram of fraudom titling table	10
Fig. 2- 1: Two Degree of freedom titling table	
Fig. 2- 2: Mini 40 force/torque sensor	
Fig. 2- 4: Evaluate wing wartisel toil and harizantal toil	
Fig. 2- 4: Fuselage, wing, vertical tail, and horizontal tail	
Fig. 2- 5: Assembled scaled model	
Fig. 2- 6: Aerodynamic Lab., Cairo University wind tunnel	
Fig. 2- 7: ABB Motor driver	
Fig. 2- 8: PXI system	
Fig. 2- 10: block discrease for wind tunnel control	
Fig. 2- 10: block diagram for wind tunnel control.	
Fig. 2-11: Lift coefficient for different angle of attacks at $\delta e = 0$	
Fig. 2-12: Drag coefficient for different angle of attacks at $\delta e = 0$	
Fig. 2- 13: Moment coefficient w.r.t c.g. for different angle of attacks at δe =	
Fig. 2- 14: Drag polar curve at $\delta e = 0$	
Fig. 2-15: Lift coefficient for different elevator deflections at $\alpha = 0$	
Fig. 2- 16: Drag coefficient for different elevator deflections at $\alpha = 0$	
Fig. 2- 17: Moment coefficient w.r.t c.g. for different elevator deflections	
$\alpha = 0$	
Fig. 2- 18: Side force coefficient for different side slip angles at $\alpha = 0$	
Fig. 2- 19: Rolling moment coefficient for different side slip angles at $\alpha = 0$	
Fig. 2- 20: Yawing moment coefficient for different side slip angles at $\alpha = 0$	26