

ESTABLISHMENT AND CHARACTERIZATION OF REFERENCE SYSTEM FOR CALIBRATION OF DYNAMIC PRESSURE SENSORS

By

Shaker Abdelwahab Shaker Gelany

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

ESTABLISHMENT AND CHARACTERIZATION OF REFERENCE SYSTEM FOR CALIBRATION OF DYNAMIC PRESSURE SENSORS

By Shaker Abdelwahab Shaker Gelany

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr. Tarek Abd El Sadek Osman

Prof. Dr. Abdel Aziz Mahmoud

Professor of Machine Design and Tribology Dept. of Mechanical Design and Production Eng. Faculty of Engineering, Cairo University

Dr. Alaaeldin Abdelfattah Eltawil

Professor of Mechanical Engineering Dept. of Mechanical Engineering National Research Centre

Dr. Bassam Abdellatif Hussein

Associate Professor

Dept. Mass, Density and Pressure Metrology

National Institute of Standards

Assistant Professor

Dept. of Mechanical Design and Production Eng.

Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

ESTABLISHMENT AND CHARACTERIZATION OF REFERENCE SYSTEM FOR CALIBRATION OF DYNAMIC PRESSURE SENSORS

By Shaker Abdelwahab Shaker Gelany

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Approved by the Examining Committee	
Prof. Dr. Tarek Abd El Sadek Osman,	Thesis Main Advisor
Prof. Dr. Ali Ahmed Khattab,	Internal Examiner
Prof. Dr. Ali E. Abuelezz, Professor of material science and metrology - Nation	External Examiner on al Institute of Standards

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer:** Shaker Abdelwahab Shaker Gelany

Date of Birth: 16 / 8 / 1981 **Nationality:** Egyptian

E-mail: Shaker9595@yahoo.com

Phone: +201010304830

Address: 9 Zakaria Uonis St., Mostashfa El Haram Giza, Egypt

Registration Date: 1/10/2014 **Awarding Date:**/2019

Degree: Doctor of Philosophy

Department: Mechanical Design and Production

Supervisors:

Prof. Dr. Tarek Abd El Sadek Osman

Prof. Dr. Abdel Aziz Mahmoud

Ass. Prof. Dr. Alaaeldin Abdelfattah Eltawil

Dr. Bassam Abdellatif Hussein

Examiners:

Prof. Dr. Ali E. Abuelezz (External examiner)
Professor of material science and metrology - National Institute of Standards
Prof. Dr. Ali Ahmed Khattab (Internal examiner)
Prof. Dr. Tarek Abd El Sadek Osman (Thesis main advisor)

Title of Thesis:

Establishment and characterization of reference system for calibration of dynamic pressure sensors

Key Words: Dynamic pressure, Falling mass, Dynamic calibration, Impulse generator **Summary:**

Measurement standards for dynamic pressure and its traceability to the International System of Units (SI) is a novel field in metrology. Therefore, such standards are not commonly found in National Metrology Institutes (NMIs) that could enable calibration of modern dynamic pressure transducers. For several industrial fields using dynamic pressure technologies, this, in turn, limits quality assurance. Due to, the lack of traceability in the dynamic pressure measurements, the dynamic pressure sensors and transducers are calibrated using static or quasi-static methods. This may lead to significant errors in measurements as the behavior of the sensor in the dynamic mode differs from the static mode. In response to this problem, this study has been dedicated to establish and investigate a primary standard system for dynamic pressure measurements up to 100 MPa with relative uncertainty as low as 1.5 %. This new reference dynamic pressure standard is of crucial importance to develop calibration methods for dynamic pressure transducers. Furthermore, it provides the metrological basis for the dynamic pressure technologies such as automotive industries, military, aerodynamics, medicine, and material testing.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Shaker Abdelwahab Shaker Gelany Date: /6/2019

Signature:

Acknowledgments

First of all, praise is to ALLAH for without HIS will, this work would not have even started.

I wish to express my deep gratitude and respect to my supervisors committee: Prof. Dr. Tarek Osman, Prof. Dr. Abdel Aziz Mahmoud, Dr. Alaaeldin Eltawil and Dr. Bassam Abd El Atif for their guidance and support. Their helpful and valuable discussions were the core reason for accomplishing this work.

My thanks and gratitude are also dedicated to every member of my family and my colleagues at the NIS, Egypt, especially Dr. Abdallah Karmalawi, for their invaluable help and their patience and understanding all along the way.

Finally, I would like to express my boundless gratitude and sincere appreciation to my mother and my father and beloved sister and brothers.

Special Thanks for my darling wife Amany and my kids' Rehab, Rana, Ziad and Hana.

Table of Contents

DISCLAIMER	I
ACKNOWLEDGMENTS	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES	
NOMENCLATURE	IX
ABSTRACT	
CHAPTER 1: INTRODUCTION	
1.1. INTRODUCTION	
1.2. MOTIVATION	
1.3. AIM OF THE WORK	
1.4. OVERVIEW OF THE THESIS	
1.5. BACKGROUND	3
1.6. DIMENSIONS OF THE SI-UNITS OF PRESSURE	4
1.7. TRACEABILITY OF PRESSURE INSTRUMENTS	4
1.7.1. Static pressure traceability	5
1.7.2. Dynamic pressure traceability	7
1.8. PRINCIPLES OF DYNAMIC PRESSURE MEASURING INSTRUMENTS	3 13
1.8.1. Strain gauge sensing element	13
1.8.2. Piezoelectric pressure sensing element	13
1.8.3. Optical pressure sensing	14
1.8.4. Capacitive sensing	14
1.9. DIGITAL SIGNAL PROCESSING	15
1.9.1. Digital filters	15
1.9.2. FFT analysis	
1.9.3. Signals coherence	17
CHAPTER 2: LITERATURE REVIEW	18
2.1. STANDARD LEVEL OF DYNAMIC PRESSURE CALIBRATION	18
2.2. REFERENCE LEVEL OF DYNAMIC PRESSURE CALIBRATION	22

CHAPTER 3: SYSTEM BASIC CONCEPT AND MODELING	24
3.1. INTRODUCTION	24
3.2. BASIC CONCEPT	24
3.3. CALCULATION OF DYNAMIC PRESSURE DUE TO FALLING MASS	24
3.4. MATHEMATICAL MODELING OF THE PIEZOELECTRIC PRESSURE	
SENSOR	27
3.4.1. System identification	28
3.5. UNCERTAINTY ANALYSIS	30
3.5.1. Uncertainty using GUM method	30
3.5.2. Uncertainty using the MC method	32
CHAPTER 4: DESIGN AND CONSTRUCTION OF DYNAMIC	
PRESSURE CALIBRATION SYSTEM	33
4.1. INTRODUCTION	33
4.2. DESIGN OBJECTIVE	33
4.3. MECHANISM STRUCTURE	34
4.3.1. Main frame	34
4.3.2. Mass lifter	36
4.3.3. Falling mass	38
4.4. PRESSURE TEST RIG	41
4.5. CONTROL UNIT	42
4.5.1. Microcontroller	42
4.5.2. Stepper motor	42
4.5.3. Electromagnets	43
4.6. MACHINE OPERATING SOFTWARE	44
4.7. MEASUREMENTS FACILITY	45
4.7.1. Velocity sensor	45
4.7.2. Dynamic pressure sensor	45
4.7.3. Accelerometer sensor	46
4.7.4. Charge amplifier	47
4.7.5. Data acquisition system	48
CHAPTER 5: EXPERIMENTAL PROCEDURE	49
5.1. SYSTEM CHARACTERIZATION PROCEDURE	49

5.1.1. Mass calibration	49
5.1.2. Calibration of the piston effective area	49
5.2. DYNAMIC PRESSURE CALIBRATION SEQUENCE	50
5.3. PROCEDURE FOR REFERENCE PRESSURE CALCULATION	51
5.3.1. Procedure to calculate the piston displacement	51
5.3.2. The falling velocity measurement	52
CHAPTER 6: RESULTS AND DISCUSSIONS	53
6.1. CHARACTERIZATION OF THE DYNAMIC PRESSURE CALIBRATION SYSTEM	53
6.1.1. Metrological characteristics of the dynamic calibration machine	53
6.1.2. Signal processing analysis	
6.2. DETERMINATION OF THE REFERENCE PRESSURE	
6.2.1. Measurement of the falling velocity	59
6.2.2. Measurement of the piston acceleration	60
6.2.3. Calculation of the piston displacements	63
6.3. VALIDATION OF THE REFERENCE PRESSURE	64
6.4. RESULTS OF UNCERTAINTY ANALYSIS	66
6.4.1. Uncertainty using GUM method	66
6.4.2. Uncertainty using the Monte Carlo method	68
6.5. RESULTS OF DYNAMIC CALIBRATION FOR A PIEZOELECTRIC PRESSURE SENSOR	70
6.5.1. Linearity of the sensor under calibration	70
6.5.2. Dynamic characteristics of the sensor under calibration	71
6.5.3. Dynamic sensitivity of sensor under calibration	72
CHAPTER 7: CONCLUSION AND FUTURE WORK	73
7.1. CONCLUSION	73
7.2. FUTURE WORK	74
REFERENCES	75
APPENDIX A: PUBLICATION	
APPENDIX R. WORKING DRAWINGS	73 83

List of Tables

Table 4-1: Mechanical properties of St 42	37
Table 4-2: Material properties of the falling mass and the piston	39
Table 4-3: Technical specifications for Microcontroller	42
Table 4-4: Technical Specification of the dynamic pressure Sensors	46
Table 4-5: Technical specification of the accelerometer sensor	47
Table 4-6: Technical specification of the signal conditioner	47
Table 4-7: Technical specification of the digital oscilloscope	48
Table 6-1: Results of mass calibration	53
Table 6-2: NIS Local gravity acceleration	53
Table 6-3: Piston cylinder assembly effective area	
Table 6-4: Maximum measurement values	
Table 6-5: Type <i>B</i> uncertainty of dynamic pressure calibration machine	67
Table 6-6: Parameters for propagation distributions and estimate values	68
Table 6-7: Reference pressure values with expanded uncertainty	
Table 6-8: The results of dynamic analysis of the pressure sensor under calibration	

List of Figures

Figure 1-1: pressure measurement modes[5]	3
Figure 1-2: Relation of Pa to SI base unit	4
Figure 1-3: Traceability chain	5
Figure 1-4: IMGC/CENAM-HG6 mercury manometer [8]	6
Figure 1-5: Schematic principle of pressure balance	7
Figure 1-6: Shock tube system	
Figure 1-7: Step pressure sequence in shock tube [12]	9
Figure 1-8: Fast opening device Diagram	
Figure 1-9: schematic of a free fall pulse generator	11
Figure 1-10: Rotating valve [15]	11
Figure 1-11: Vibrating liquid column	12
Figure 1-12: Layout of the dynamic pressure measurement system	13
Figure 1-13: strain gauge sensing device	13
Figure 1-14: The transverse piezoelectric effect	14
Figure 1-15: Interferometer pressure sensing	14
Figure 1-16: Capacitive sensing	15
Figure 1-17: Low pass filter	15
Figure 1-18: High pass filter	16
Figure 1-19: Band pass filter	16
Figure 1-20: Notch filter	17
Figure 2-1: PTB Schematic setup of dynamic pressure system [16]	18
Figure 2-2: Schematic of MIKES drop weight system[17]	19
Figure 2-3: NPL Shock tube system[18]	20
Figure 2-4: Shock tube stage of operation [18]	20
Figure 2-5: KRISS Dynamic calibration system[19]	22
Figure 2-6: UME drop mass system up to 800 MPa[20]	22
Figure 2-7: The schematic of the square wave pressure generator system[21]	23
Figure 3-1: Falling mass- Pressure test rig model	25
Figure 3-2: Dynamic pressure sensor model	
Figure 3-3: System identification methodology	
Figure 3-4: Process of the system identification method	29
Figure 3-5: Propagation distribution of input quantities	32
Figure 4-1: NIS standard dynamic calibration system	33
Figure 4-2: Main frame structure	
Figure 4-3: Exploded view of main frame	35
Figure 4-4: Schematic of (a) upper plate and (b) lower plate	35
Figure 4-5: Schematic of frame tie rode with dimension	35
Figure 4-6: Mass lifter mechanism	36
Figure 4-7: Schematic of the mass holder with dimensions in mm	36
Figure 4-8: Schematic of a guide rod for falling mass	37
Figure 4-9: The fixation of the mass holder	
Figure 4-10: FE von Mises stresses of the mass holder	
Figure 4-11: Falling mass	
Figure 4-12: The fixation of the falling mass and the piston	39

Figure 4-13: Stresses of the nonlinear contact between the mass holder and the piston	
Figure 4-14: Pressure test rig with an exploded view on the right side	41
Figure 4-15: Concrete foundation for the pressure test rig	41
Figure 4-16: Arduino Uno microcontroller	42
Figure 4-17: Stepper motor circuit diagram	43
Figure 4-18: Electromagnet for lifting the falling mass	
Figure 4-19: Front panel window of machine operating software	. 44
Figure 4-20: Block diagram window of machine operating software	. 44
Figure 4-21: (a) Falling velocity measuring system and (b) the output signal	45
Figure 4-22: Piezoelectric dynamic pressure sensor	46
Figure 4-23: Shock accelerometer sensor	47
Figure 4-24: Signal conditioner charge amplifier	47
Figure 4-25: Digital storage oscilloscope	48
Figure 5-1: Calibration using a mass comparator and standard masses	. 49
Figure 5-2: calibration of the effective area of PCA	50
Figure 5-3: Signals received by the oscilloscope	51
Figure 5-4: Piston velocity calculation sequence from the acceleration signal	52
Figure 5-5: Piston displacement calculation	52
Figure 6-1: Original Signals captured by the Oscilloscope	54
Figure 6-2: Original accelerometer sensor signal	54
Figure 6-3: Low pass filtered signal	55
Figure 6-4: High pass filtered accelerometer signal	55
Figure 6-5: FFT for low pass accelerometer signal at different loading heights	56
Figure 6-6: FFT analysis for the high pass accelerometer signal	56
Figure 6-7: Piezoelectric pressure sensor signal	57
Figure 6-8: High-frequency pressure signal	
Figure 6-9: High pass signal FFT analysis of piezoelectric pressure sensor	58
Figure 6-10 Accelerometer and pressure sensors output signals	
Figure 6-11: Coherence analysis at different loading condition	
Figure 6-12: The traveling time of the falling mass	
Figure 6-13: Measurement of the falling velocity	
Figure 6-14: Acceleration- Time Curve at different falling height (a-n)	63
	64
Figure 6-16: Piezoelectric pressure-time curve	
Figure 6-17: Repeatability of dynamic pressure	
Figure 6-18: Relative pressure error with uncertainty bar	
Figure 6-19: PDF of falling mass	
Figure 6-20: PDF of falling velocity	
Figure 6-21: PDF of piston displacement	
Figure 6-22: PDF of piston area	
Figure 6-23: PDF of maximum pressure	
Figure 6-24: Linearity of the sensor under calibration	
Figure 6-25: Residual charge versus reference pressure	
Figure 6-26: Measured and simulated dynamic pressure	
Figure 6-27: Dynamic sensitivity of sensor under calibration	72

Nomenclature

Pressure, Pa pPressure function of time, Pa p(t)h Height of the liquid column, m Reference pressure, Pa p_r Gravitational acceleration, m/s² g Mass, kg mEffective area, m² A_p Mach number of the shock wave M_1 Cutoff frequency, Hz f_c Cutoff high-frequency, Hz f_H Cutoff low frequency, Hz f_L The total mass of piston, drop weight and fluid mass, kg m_{tot} The maximum acceleration, ms⁻² \ddot{x}_{max} $P_{\mathcal{S}}$ Pressure reservoir, Pa work done, J W_{net} F Force, N Maximum piston displacement, m x_{max} Falling mass, kg m_f Piston mass, kg m_p Initial velocity, m/s v_0 The resultant velocity, m/s vV(t)Piston velocity, m/s Stiffness, N.m k Viscous damping coefficient, N.s/m С K Dynamic sensitivity, pC/MPa

nNumber of observations \bar{x} Mean of observationsNNumber of componentsdThe width of the edge, mtThe traveled time, sec

Greek nomenclature

α_1	The speed of sound in shock tube, m/s
γ_1	The gas specific heat ratio in shock tube
Δp	The pressure difference between the two chambers, Pa
ω_d	Damped frequency, rad/s
ω_n	Natural frequency, rad/s
ξ	Damping ratio
$ ho_f$	Fluid density, kgm ⁻³
$ ho_a$	the air density, kgm ⁻³
$ ho_m$	The mass density, kgm ⁻³
γ	The surface tension of the test piston oil, N
С	The circumference of the test piston, m
α_p	The thermal expansion coefficients of the piston material, °C ⁻¹
α_c	The thermal expansion coefficients of the cylinder material, °C ⁻¹
σ	The standard deviation

Abbreviations

SI International System of units

NMIs National Metrology Institutes

FEM Finite Element Method

NIS National Institute of Standards, Egypt

FFT Fast Fourier Transform

DFT Discrete Fourier Transform

PTB Physikalisch-Technische Bundesanstalt, Germany

VTT Technical Research Centre, Finland

MIKES Centre for Metrology, Finland

NPL National Physical Laboratory, UK

KRISS Korea Research Institute of Standards and Science

UME National Metrology Institute, Turkey

PTFE Polytetrafluoroethylene

GUM Guide of Uncertainty in Measurement

MC Mount Carlo

PDF Probability Density Functions

DAQ Data Acquisition system

RS Reference Sensor

UC Under Calibration