IDENTIFICATION AND CHARACTERIZATION OF SOME GENES RELATED TO HYDROCARBON COMPOUNDS DEGRADATION

\mathbf{BY}

HEBA ABDEL-HALIM RADWAN ABDEL-HALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2013

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY OF SCIENCE

In

Agricultural Sciences

(Genetics)

Department of Genetics
Faculty of Agriculture
Cairo University
EGYPT

2019

APPROVAL SHEET

IDENTIFICATION AND CHARACTERIZATION OF SOME GENES RELATED TO HYDROCARBON COMPOUNDS DEGRADATION

Ph.D. Thesis
In
Agric. Sci. (Genetics)

By

HEBA ABDEL-HALIM RADWAN ABDEL-HALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2013

APPROVAL COMMITTEE

Dr. MOHAMED MUSTAFA IBRAHIM Professor of Genetics, Fac. Biotech., Misr University for Science and Technology
Dr. NAGLAA ABDELMONEM ABDALLAH Professor of Genetics, Fac. Agric., Cairo University
Dr. ABDELHADI ABDALLAH ABDELHADI Professor of Genetics, Fac. Agric., Cairo University

Date: 17/6/2019

SUPERVISION SHEET

IDENTIFICATION AND CHARACTERIZATION OF SOME GENES RELATED TO HYDROCARBON COMPOUNDS DEGRADATION

Ph.D. Thesis
In
Agricultural Sci. (Agricultural Genetics)

By

HEBA ABDEL-HALIM RADWAN ABDEL-HALIM

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2007 M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2013

SUPERVISION COMMITTEE

Dr. HAGGAG SALAH ZAIN MOSTAFA

Professor of Genetics, Fac. Agric., Cairo University

Dr. ABDELHADI ABDALLAH ABDELHADI

Professor of Genetics, Fac. Agric., Cairo University

Dr. AHMED ZEIN EL-ABDEEN ABDEL-AZIZ

Professor of Biochemistry, Fac. Biotech., Misr University of Science and Technology

Dr. AHMED NAGIB EL-SAYED SHARAF

Late Professor of Genetics, Fac. Agric., Cairo University

Name of Candidate: Heba Abdel Halim Radwan Degree: Ph.D.

Title of Thesis: Isolation and Characterization Of Some Genes Related To

Polyaromatics Hydrocarbon Degrading Enzyme

Supervisors: Dr. Haggag Salah Zein

Dr. Abdelhadi Abdallah Abdelhadi Dr. Ahmed Zein Elabdeen Abdel-Aziz Dr. Ahmed Najib Elsayed Sharaf

Department: Genetics Approval: 17/6/2019

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant hazardous environmental contaminants. Various strategies, including chemical and physical like oxidation, fixation, leaching, and electrokinetic or biologicalbased techniques were used for remediation of polluted sites. Bioremediation of PAHs, via PAH-degrading endophytic and rhizospheric microbes, represented as a time-/cost-effective way for ecorestoration. Four bacterial strains were isolated from contaminated soil on MSM supplemented with anthracene, alpha-naphthalene or catechol as sole carbon sources. These isolates were identified by 16S rRNA gene as Bacillus anthracis, B. cereus, B. mojavensis and B. subtilis. The degradation efficiency on the selected aromatic compounds was tested by HPLC analysis. B. subtilis showed the highest degradation efficiency of anthracene (99%) after five days of incubation. B. subtilis showed the highest catechol 1, 2 dioxygenase activity in MSM supplemented with anthracene. The enzyme was purified by gel filtration chromatography and characterized (70 kD, K_m 2.7 μg and V_{max} 178 U/mg protein). The catechol 1,2 dioxygenase gene from the identified four bacterial strains were isolated and submitted to GenBank (accession numbers MG255165-MG255168). The gene expression level of catechol 1,2 dioxygenase gene was upregulated $\simeq 2.5$ fold during the 24 hr of incubation period in the presence of Fe³⁺. Furthermore, B. subtilis is a promising strain to be used in bioremediation of aromatic compounds-contaminated environments.

Keywords: *Bacillus subtilis*, catechol 1,2 dioxygenase, bioremediation, PAHs, qPCR.

DEDICATION

I dedicate this work to whom my heartfelt thanks to Prof. Dr. Ahmed Nagib El-sayed Sharaf, and all my family. A special feeling to my Dad Abdelhalim and my mom Katifa, their words of encouragement ring in my ears and their endless support along the period of my post-graduation. My sister Noha and my little brother Mohammed have never left my side.

Special dedication to my husband Mahmoud and my children Yehia and Kinda who bear with me a lots of efforts and fatigues.

I also dedicate this work to my friends and colleagues at collage of Biotechnology especially my best friend Dr. Ingy Badway Labib, Dr. Mohammed Abdel Hakim, Nermin Gamal and Marina Mourice for their encouragement and support.

Acknowledgement

At first, I would like to express my thanks to **ALLAH**, my god for his blessing that allowed me to fulfill this work.

I would like to express my sincere gratitude and deep appreciation to late **Professor Dr. Ahmed N. Sharaf**, professor of Genetics, Faculty of Agriculture, Cairo University, for his supervision, keen interest, encouragement, and kindness. Also I would like to acknowledge with deep gratitude **Dr. Haggag Salah Zein**, Professor of Genetics, Faculty of Agriculture, Cairo University for valuable advice and his direct supervision and support during the stages of this work. I wish to thanks also **Dr. Ahmed Zein Abdel Aziz** Professor of Biochemistry, Faculty of Biotechnology, Misr University for Science and Technology, 6 October city for his encouragement during the theoretical and practical parts of this work. From my deep heart my thanks are for **Dr. Abdelhadi Abdallah Abdelhadi** Professor of Genetics, Faculty of Agriculture, Cairo University for his great active continuous help and for his direct supervision.

Grateful appreciation is also extended to all staff members of the collage of Biotechnology Misr University for Science and Technology, 6 October City for their continuous help, providing of the facilities and the moral support.

LIST OF ABBREVIATIONS

Abbrev.	Full term	
AH	Aromatic hydrocarbon	
B(a)P	Benzo[a]pyrene	
bp	Base pair	
HMW	High molecular weight	
HPLC	High performance liquid chromatography	
KDa	Kilo Dalton	
LB	Luria broth	
LMW	Low molecular weight	
MSM	Mineral salt media	
РАН	Poly aromatics hydrocarbon	
PCR	Polymerase Chain Reaction	
qPCR	Quantative Polymerase Chain Reaction	
SDS	Sodium dodecyl sulfate	
TEMED	Tetramethylethylenediamine	

CONTENTS

NTRODUCTI EVELEW OF	ION FLITREATUR	 FC		
	n of AH accordi			
	s aromatic hydrod			
b. Three-ring	gs aromatic hydro	ocarbons		
c. Four-rings	s aromatic hydro	carbons	•••••	
_	s aromatic hydrod			
	l occurrence of p	. •		
· ·	rial sources			
	es and occurrence			
c. Source	e and occurrence	of AH in v	water	
d. Source	e and occurrence	of AH in f	food	
hydrocarbo	and genotoxions ns Hs on Soil Micr			
5. Effects on A	Aquatic Ecosyste	e m		
6. Persistence	of AHs in the E	nvironme	nt	
7. Metabolism	of aromatics hy	drocarbo	ns	
8. Aerobic Bio	degradation of A	AHs		
	Biodegradation of the detics determinated			
11. Bacterial De	egradation of Al	Hs		
2. Factors Affe	ecting Bioremed	iation of A	AH s	
a. Concentra	ntion of hydrogen	ions (pH)		
b. Temperatu	ure			
c. Salinity				